ConfigProto

ConfigProto kelas akhir publik

 Session configuration parameters.
 The system picks appropriate values for fields that are not set.
 
Tipe protobuf tensorflow.ConfigProto

Kelas Bersarang

kelas ConfigProto.Builder
 Session configuration parameters. 
kelas ConfigProto.Eksperimental
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
antarmuka ConfigProto.ExperimentalOrBuilder

Konstanta

ke dalam ALLOW_SOFT_PLACEMENT_FIELD_NUMBER
ke dalam CLUSTER_DEF_FIELD_NUMBER
ke dalam DEVICE_COUNT_FIELD_NUMBER
ke dalam DEVICE_FILTERS_FIELD_NUMBER
ke dalam EXPERIMENTAL_FIELD_NUMBER
ke dalam GPU_OPTIONS_FIELD_NUMBER
ke dalam GRAPH_OPTIONS_FIELD_NUMBER
ke dalam INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER
ke dalam INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER
ke dalam ISOLATE_SESSION_STATE_FIELD_NUMBER
ke dalam LOG_DEVICE_PLACEMENT_FIELD_NUMBER
ke dalam OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER
ke dalam PLACEMENT_PERIOD_FIELD_NUMBER
ke dalam RPC_OPTIONS_FIELD_NUMBER
ke dalam SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER
ke dalam SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER
ke dalam USE_PER_SESSION_THREADS_FIELD_NUMBER

Metode Publik

boolean
berisiDeviceCount (kunci string)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
boolean
sama dengan (Objek objek)
boolean
dapatkanAllowSoftPlacement ()
 Whether soft placement is allowed.
ClusterDef
dapatkanClusterDef ()
 Optional list of all workers to use in this session.
ClusterDefOrBuilder
dapatkanClusterDefOrBuilder ()
 Optional list of all workers to use in this session.
ConfigProto statis
KonfigurasiProto
com.google.protobuf.Descriptors.Descriptor statis terakhir
Peta<String, Integer>
dapatkan Jumlah Perangkat ()
Gunakan getDeviceCountMap() sebagai gantinya.
ke dalam
dapatkanDeviceCountCount ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
Peta<String, Integer>
dapatkanDeviceCountMap ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
ke dalam
getDeviceCountOrDefault (kunci string, int defaultValue)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
ke dalam
getDeviceCountOrThrow (kunci string)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
Rangkaian
getDeviceFilters (indeks int)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ByteString
getDeviceFiltersBytes (indeks int)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
ke dalam
dapatkanDeviceFiltersCount ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ProtocolStringList
dapatkanDaftarFilterPerangkat ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
ConfigProto.Eksperimental
dapatkan Eksperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
ConfigProto.ExperimentalOrBuilder
dapatkanExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
Opsi GPU
dapatkanGpuOptions ()
 Options that apply to all GPUs.
GPUOptionsOrBuilder
dapatkanGpuOptionsOrBuilder ()
 Options that apply to all GPUs.
Opsi Grafik
dapatkanGraphOptions ()
 Options that apply to all graphs.
GraphOptionsOrBuilder
dapatkanGraphOptionsOrBuilder ()
 Options that apply to all graphs.
ke dalam
dapatkanInterOpParallelismThreads ()
 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
ke dalam
dapatkanIntraOpParallelismThreads ()
 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
boolean
dapatkanIsolateSessionState ()
 If true, any resources such as Variables used in the session will not be
 shared with other sessions.
boolean
dapatkanLogDevicePlacement ()
 Whether device placements should be logged.
panjang
dapatkanOperationTimeoutInMs ()
 Global timeout for all blocking operations in this session.
ke dalam
dapatkanPeriode Penempatan ()
 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
Opsi RPCO
dapatkanRpcOptions ()
 Options that apply when this session uses the distributed runtime.
RPCOptionsOrBuilder
dapatkanRpcOptionsOrBuilder ()
 Options that apply when this session uses the distributed runtime.
ke dalam
ThreadPoolOptionProto
getSessionInterOpThreadPool (indeks int)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
ke dalam
getSessionInterOpThreadPoolCount ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
Daftar< ThreadPoolOptionProto >
dapatkanSessionInterOpThreadPoolList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
ThreadPoolOptionProtoOrBuilder
getSessionInterOpThreadPoolOrBuilder (indeks int)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
Daftar<? memperluas ThreadPoolOptionProtoOrBuilder >
getSessionInterOpThreadPoolOrBuilderList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
boolean
dapatkanShareClusterDevicesInSession ()
 When true, WorkerSessions are created with device attributes from the
 full cluster.
final com.google.protobuf.UnknownFieldSet
boolean
dapatkanUsePerSessionThreads ()
 If true, use a new set of threads for this session rather than the global
 pool of threads.
boolean
hasClusterDef ()
 Optional list of all workers to use in this session.
boolean
memiliki Eksperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
boolean
memilikiGpuOptions ()
 Options that apply to all GPUs.
boolean
hasGraphOptions ()
 Options that apply to all graphs.
boolean
memilikiRpcOptions ()
 Options that apply when this session uses the distributed runtime.
ke dalam
boolean terakhir
ConfigProto.Builder statis
ConfigProto.Builder statis
newBuilder (prototipe ConfigProto )
ConfigProto.Builder
ConfigProto statis
parseDelimitedFrom (masukan Aliran Masukan)
ConfigProto statis
parseDelimitedFrom (masukan InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto statis
parseFrom (data ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto statis
parseFrom (com.google.protobuf.CodedInputStream masukan)
ConfigProto statis
parseFrom (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto statis
parseFrom (data ByteBuffer)
ConfigProto statis
parseFrom (com.google.protobuf.CodedInputStream masukan, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto statis
parseFrom (com.google.protobuf.ByteString data)
ConfigProto statis
parseFrom (masukan InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
ConfigProto statis
parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
statis
ConfigProto.Builder
ruang kosong
writeTo (com.google.protobuf.CodedOutputStream keluaran)

Metode Warisan

Konstanta

int akhir statis publik ALLOW_SOFT_PLACEMENT_FIELD_NUMBER

Nilai Konstan: 7

int final statis publik CLUSTER_DEF_FIELD_NUMBER

Nilai Konstan: 14

int akhir statis publik DEVICE_COUNT_FIELD_NUMBER

Nilai Konstan: 1

int akhir statis publik DEVICE_FILTERS_FIELD_NUMBER

Nilai Konstan: 4

int final statis publik EXPERIMENTAL_FIELD_NUMBER

Nilai Konstan: 16

int akhir statis publik GPU_OPTIONS_FIELD_NUMBER

Nilai Konstan: 6

int akhir statis publik GRAPH_OPTIONS_FIELD_NUMBER

Nilai Konstan: 10

int akhir statis publik INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER

Nilai Konstan: 5

int final statis publik INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER

Nilai Konstan: 2

int final statis publik ISOLATE_SESSION_STATE_FIELD_NUMBER

Nilai Konstan: 15

int akhir statis publik LOG_DEVICE_PLACEMENT_FIELD_NUMBER

Nilai Konstan: 8

int akhir statis publik OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER

Nilai Konstan: 11

int final statis publik PLACEMENT_PERIOD_FIELD_NUMBER

Nilai Konstan: 3

int akhir statis publik RPC_OPTIONS_FIELD_NUMBER

Nilai Konstan: 13

int akhir statis publik SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER

Nilai Konstan: 12

int final statis publik SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER

Nilai Konstan: 17

int final statis publik USE_PER_SESSION_THREADS_FIELD_NUMBER

Nilai Konstan: 9

Metode Publik

boolean publik berisiDeviceCount (kunci string)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

boolean publik sama (Obj objek)

getAllowSoftPlacement boolean publik ()

 Whether soft placement is allowed. If allow_soft_placement is true,
 an op will be placed on CPU if
   1. there's no GPU implementation for the OP
 or
   2. no GPU devices are known or registered
 or
   3. need to co-locate with reftype input(s) which are from CPU.
 
bool allow_soft_placement = 7;

ClusterDef publik getClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

ClusterDefOrBuilder publik getClusterDefOrBuilder ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

ConfigProto statis publik getDefaultInstance ()

ConfigProto publik getDefaultInstanceForType ()

public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()

Peta publik<String, Integer> getDeviceCount ()

Gunakan getDeviceCountMap() sebagai gantinya.

int publik getDeviceCountCount ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

Peta publik<String, Integer> getDeviceCountMap ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

public int getDeviceCountOrDefault (kunci string, int defaultValue)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

public int getDeviceCountOrThrow (kunci string)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

String publik getDeviceFilters (indeks int)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

publik com.google.protobuf.ByteString getDeviceFiltersBytes (indeks int)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

int publik getDeviceFiltersCount ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

publik com.google.protobuf.ProtocolStringList getDeviceFiltersList ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

ConfigProto publik.Eksperimental getEksperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

ConfigProto.ExperimentalOrBuilder publik getExperimentalOrBuilder ()

.tensorflow.ConfigProto.Experimental experimental = 16;

Opsi GPU publik getGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

GPUOptionsOrBuilder publik getGpuOptionsOrBuilder ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

GraphOptions publik getGraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

publik GraphOptionsOrBuilder getGraphOptionsOrBuilder ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

publik int getInterOpParallelismThreads ()

 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
 0 means the system picks an appropriate number.
 Negative means all operations are performed in caller's thread.
 Note that the first Session created in the process sets the
 number of threads for all future sessions unless use_per_session_threads is
 true or session_inter_op_thread_pool is configured.
 
int32 inter_op_parallelism_threads = 5;

publik int getIntraOpParallelismThreads ()

 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
 0 means the system picks an appropriate number.
 If you create an ordinary session, e.g., from Python or C++,
 then there is exactly one intra op thread pool per process.
 The first session created determines the number of threads in this pool.
 All subsequent sessions reuse/share this one global pool.
 There are notable exceptions to the default behavior describe above:
 1. There is an environment variable  for overriding this thread pool,
    named TF_OVERRIDE_GLOBAL_THREADPOOL.
 2. When connecting to a server, such as a remote `tf.train.Server`
    instance, then this option will be ignored altogether.
 
int32 intra_op_parallelism_threads = 2;

boolean publik getIsolateSessionState ()

 If true, any resources such as Variables used in the session will not be
 shared with other sessions. However, when clusterspec propagation is
 enabled, this field is ignored and sessions are always isolated.
 
bool isolate_session_state = 15;

getLogDevicePlacement boolean publik ()

 Whether device placements should be logged.
 
bool log_device_placement = 8;

getOperationTimeoutInMs publik yang panjang ()

 Global timeout for all blocking operations in this session.  If non-zero,
 and not overridden on a per-operation basis, this value will be used as the
 deadline for all blocking operations.
 
int64 operation_timeout_in_ms = 11;

publik dapatkanParserForType ()

int publik getPlacementPeriod ()

 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
 
int32 placement_period = 3;

RPCOptions publik getRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

RPCOptionsOrBuilder publik getRpcOptionsOrBuilder ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

publik int getSerializedSize ()

ThreadPoolOptionProto publik getSessionInterOpThreadPool (int indeks)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

int publik getSessionInterOpThreadPoolCount ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

Daftar publik< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

publik ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int indeks)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

Daftar Publik<? memperluas ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

boolean publik getShareClusterDevicesInSession ()

 When true, WorkerSessions are created with device attributes from the
 full cluster.
 This is helpful when a worker wants to partition a graph
 (for example during a PartitionedCallOp).
 
bool share_cluster_devices_in_session = 17;

public final com.google.protobuf.UnknownFieldSet getUnknownFields ()

boolean publik getUsePerSessionThreads ()

 If true, use a new set of threads for this session rather than the global
 pool of threads. Only supported by direct sessions.
 If false, use the global threads created by the first session, or the
 per-session thread pools configured by session_inter_op_thread_pool.
 This option is deprecated. The same effect can be achieved by setting
 session_inter_op_thread_pool to have one element, whose num_threads equals
 inter_op_parallelism_threads.
 
bool use_per_session_threads = 9;

boolean publik hasClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

boolean publik hasEksperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

boolean publik hasGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

boolean publik hasGraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

boolean publik hasRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

kode hash int publik ()

boolean akhir publik diinisialisasi ()

ConfigProto.Builder statis publik newBuilder ()

ConfigProto.Builder statis publik newBuilder (prototipe ConfigProto )

ConfigProto.Builder publik newBuilderForType ()

ConfigProto statis publik parseDelimitedFrom (input InputStream)

Melempar
Pengecualian IO

ConfigProto statis publik parseDelimitedFrom (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Melempar
Pengecualian IO

parseFrom ConfigProto statis publik (data ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Melempar
ProtokolBufferException Tidak Valid

parseFrom ConfigProto statis publik (com.google.protobuf.CodedInputStream input)

Melempar
Pengecualian IO

ConfigProto statis publik parseFrom (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Melempar
ProtokolBufferException Tidak Valid

parseFrom ConfigProto statis publik (data ByteBuffer)

Melempar
ProtokolBufferException Tidak Valid

ConfigProto statis publik parseFrom (com.google.protobuf.CodedInputStream masukan, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Melempar
Pengecualian IO

parseFrom ConfigProto statis publik (com.google.protobuf.ByteString data)

Melempar
ProtokolBufferException Tidak Valid

parseFrom ConfigProto statis publik (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Melempar
Pengecualian IO

ConfigProto statis publik parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

Melempar
ProtokolBufferException Tidak Valid

statis publik pengurai ()

ConfigProto.Builder publik ke Builder ()

public void writeTo (com.google.protobuf.CodedOutputStream keluaran)

Melempar
Pengecualian IO