ConfigProto

সর্বজনীন চূড়ান্ত ক্লাস ConfigProto

 Session configuration parameters.
 The system picks appropriate values for fields that are not set.
 
Protobuf টাইপ tensorflow.ConfigProto

নেস্টেড ক্লাস

ক্লাস ConfigProto.Builder
 Session configuration parameters. 
ক্লাস ConfigProto.পরীক্ষামূলক
 Everything inside Experimental is subject to change and is not subject
 to API stability guarantees in
 https://www.tensorflow.org/guide/version_compat. 
ইন্টারফেস ConfigProto.ExperimentalOrBuilder

ধ্রুবক

int ALLOW_SOFT_PLACEMENT_FIELD_NUMBER
int CLUSTER_DEF_FIELD_NUMBER
int DEVICE_COUNT_FIELD_NUMBER
int DEVICE_FILTERS_FIELD_NUMBER
int EXPERIMENTAL_FIELD_NUMBER
int GPU_OPTIONS_FIELD_NUMBER
int GRAPH_OPTIONS_FIELD_NUMBER
int INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER
int INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER
int ISOLATE_SESSION_STATE_FIELD_NUMBER
int LOG_DEVICE_PLACEMENT_FIELD_NUMBER
int OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER
int PLACEMENT_PERIOD_FIELD_NUMBER
int RPC_OPTIONS_FIELD_NUMBER
int SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER
int SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER
int USE_PER_SESSION_THREADS_FIELD_NUMBER

পাবলিক পদ্ধতি

বুলিয়ান
ডিভাইস কাউন্ট রয়েছে (স্ট্রিং কী)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
বুলিয়ান
সমান (অবজেক্ট অবজেক্ট)
বুলিয়ান
getAllowSoftPlacement ()
 Whether soft placement is allowed.
ক্লাস্টারডিফ
getClusterDef ()
 Optional list of all workers to use in this session.
ClusterDefOrBuilder
getClusterDefOrBuilder ()
 Optional list of all workers to use in this session.
স্ট্যাটিক কনফিগপ্রোটো
ConfigProto
চূড়ান্ত স্ট্যাটিক com.google.protobuf.Descriptors.Descriptor
মানচিত্র <স্ট্রিং, পূর্ণসংখ্যা>
getDeviceCount ()
পরিবর্তে getDeviceCountMap() ব্যবহার করুন।
int
getDeviceCountCount ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
মানচিত্র <স্ট্রিং, পূর্ণসংখ্যা>
getDeviceCountMap ()
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
int
getDeviceCountOrDefault (স্ট্রিং কী, int defaultValue)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
int
getDeviceCountOrThrow (স্ট্রিং কী)
 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.
স্ট্রিং
getDeviceFilters (int সূচক)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ByteString
getDeviceFiltersBytes (int সূচক)
 When any filters are present sessions will ignore all devices which do not
 match the filters.
int
getDeviceFiltersCount ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
com.google.protobuf.ProtocolStringList
getDeviceFiltersList ()
 When any filters are present sessions will ignore all devices which do not
 match the filters.
ConfigProto.পরীক্ষামূলক
পরীক্ষামূলক ()
.tensorflow.ConfigProto.Experimental experimental = 16;
ConfigProto.ExperimentalOrBuilder
GetExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
জিপিইউ অপশন
getGpuOptions ()
 Options that apply to all GPUs.
GPUOptionsOrBuilder
getGpuOptionsOrBuilder ()
 Options that apply to all GPUs.
গ্রাফ অপশন
GetGraphOptions ()
 Options that apply to all graphs.
GraphOptionsOrBuilder
getGraphOptionsOrBuilder ()
 Options that apply to all graphs.
int
GetInterOpParallelismThreads ()
 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
int
GetIntraOpParallelismThreads ()
 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
বুলিয়ান
getIsolateSessionState ()
 If true, any resources such as Variables used in the session will not be
 shared with other sessions.
বুলিয়ান
getLogDevicePlacement ()
 Whether device placements should be logged.
দীর্ঘ
getOperationTimeoutInMs ()
 Global timeout for all blocking operations in this session.
int
গেট প্লেসমেন্ট পিরিয়ড ()
 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
RPCOptions
getRpcOptions ()
 Options that apply when this session uses the distributed runtime.
RPCOptionsOrBuilder
getRpcOptionsOrBuilder ()
 Options that apply when this session uses the distributed runtime.
int
ThreadPoolOptionProto
getSessionInterOpThreadPool (int সূচক)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
int
getSessionInterOpThreadPoolCount ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
তালিকা< ThreadPoolOptionProto >
getSessionInterOpThreadPoolList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
ThreadPoolOptionProtoOrBuilder
getSessionInterOpThreadPoolOrBuilder (int সূচক)
 This option is experimental - it may be replaced with a different mechanism
 in the future.
তালিকা <? ThreadPoolOptionProtoOrBuilder > প্রসারিত করে
getSessionInterOpThreadPoolOrBuilderList ()
 This option is experimental - it may be replaced with a different mechanism
 in the future.
বুলিয়ান
getShareClusterDevicesInSession ()
 When true, WorkerSessions are created with device attributes from the
 full cluster.
চূড়ান্ত com.google.protobuf.UnknownFieldSet
বুলিয়ান
getUsePerSessionThreads ()
 If true, use a new set of threads for this session rather than the global
 pool of threads.
বুলিয়ান
hasClusterDef ()
 Optional list of all workers to use in this session.
বুলিয়ান
আছে পরীক্ষামূলক ()
.tensorflow.ConfigProto.Experimental experimental = 16;
বুলিয়ান
hasGpuOptions ()
 Options that apply to all GPUs.
বুলিয়ান
আছে গ্রাফ অপশন ()
 Options that apply to all graphs.
বুলিয়ান
hasRpcOptions ()
 Options that apply when this session uses the distributed runtime.
int
চূড়ান্ত বুলিয়ান
স্ট্যাটিক ConfigProto.Builder
স্ট্যাটিক ConfigProto.Builder
newBuilder ( ConfigProto প্রোটোটাইপ)
ConfigProto.Builder
স্ট্যাটিক কনফিগপ্রোটো
পার্স ডিলিমিটেডফ্রম (ইনপুটস্ট্রিম ইনপুট)
স্ট্যাটিক কনফিগপ্রোটো
parseDelimitedFrom (ইনপুটস্ট্রীম ইনপুট, com.google.protobuf.ExtensionRegistryLite এক্সটেনশনরেজিস্ট্রি)
স্ট্যাটিক কনফিগপ্রোটো
parseFrom (ByteBuffer ডেটা, com.google.protobuf.ExtensionRegistryLite এক্সটেনশন রেজিস্ট্রি)
স্ট্যাটিক কনফিগপ্রোটো
parseFrom (com.google.protobuf.CodedInputStream ইনপুট)
স্ট্যাটিক কনফিগপ্রোটো
পার্সফ্রম (বাইট[] ডেটা, com.google.protobuf.ExtensionRegistryLite এক্সটেনশন রেজিস্ট্রি)
স্ট্যাটিক কনফিগপ্রোটো
পার্সফ্রম (বাইটবাফার ডেটা)
স্ট্যাটিক কনফিগপ্রোটো
parseFrom (com.google.protobuf.CodedInputStream ইনপুট, com.google.protobuf.ExtensionRegistryLite এক্সটেনশন রেজিস্ট্রি)
স্ট্যাটিক কনফিগপ্রোটো
parseFrom (com.google.protobuf.ByteString ডেটা)
স্ট্যাটিক কনফিগপ্রোটো
পার্সফ্রম (ইনপুটস্ট্রিম ইনপুট, com.google.protobuf.ExtensionRegistryLite এক্সটেনশনরেজিস্ট্রি)
স্ট্যাটিক কনফিগপ্রোটো
parseFrom (com.google.protobuf.ByteString ডেটা, com.google.protobuf.ExtensionRegistryLite এক্সটেনশন রেজিস্ট্রি)
স্থির
ConfigProto.Builder
অকার্যকর
writeTo (com.google.protobuf.CodedOutputStream আউটপুট)

উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি

ধ্রুবক

ALLOW_SOFT_PLACEMENT_FIELD_NUMBER int পাবলিক স্ট্যাটিক ফাইনাল

ধ্রুবক মান: 7

পাবলিক স্ট্যাটিক ফাইনাল int CLUSTER_DEF_FIELD_NUMBER

ধ্রুবক মান: 14

সর্বজনীন স্ট্যাটিক ফাইনাল int DEVICE_COUNT_FIELD_NUMBER

ধ্রুবক মান: 1

সর্বজনীন স্ট্যাটিক ফাইনাল int DEVICE_FILTERS_FIELD_NUMBER

ধ্রুবক মান: 4

EXPERIMENTAL_FIELD_NUMBER int পাবলিক স্ট্যাটিক ফাইনাল

ধ্রুবক মান: 16

GPU_OPTIONS_FIELD_NUMBER int পাবলিক স্ট্যাটিক ফাইনাল

ধ্রুবক মান: 6

GRAPH_OPTIONS_FIELD_NUMBER int পাবলিক স্ট্যাটিক ফাইনাল

ধ্রুবক মান: 10

পাবলিক স্ট্যাটিক ফাইনাল int INTER_OP_PARALLELISM_THREADS_FIELD_NUMBER

ধ্রুবক মান: 5

পাবলিক স্ট্যাটিক ফাইনাল int INTRA_OP_PARALLELISM_THREADS_FIELD_NUMBER

ধ্রুবক মান: 2

পাবলিক স্ট্যাটিক ফাইনাল int ISOLATE_SESSION_STATE_FIELD_NUMBER

ধ্রুবক মান: 15

পাবলিক স্ট্যাটিক ফাইনাল int LOG_DEVICE_PLACEMENT_FIELD_NUMBER

ধ্রুবক মান: 8

OPERATION_TIMEOUT_IN_MS_FIELD_NUMBER এ সর্বজনীন স্ট্যাটিক ফাইনাল

ধ্রুবক মান: 11

পাবলিক স্ট্যাটিক ফাইনাল int PLACEMENT_PERIOD_FIELD_NUMBER

ধ্রুবক মান: 3

পাবলিক স্ট্যাটিক ফাইনাল int RPC_OPTIONS_FIELD_NUMBER

ধ্রুবক মান: 13

পাবলিক স্ট্যাটিক ফাইনাল int SESSION_INTER_OP_THREAD_POOL_FIELD_NUMBER

ধ্রুবক মান: 12

পাবলিক স্ট্যাটিক ফাইনাল int SHARE_CLUSTER_DEVICES_IN_SESSION_FIELD_NUMBER

ধ্রুবক মান: 17

USE_PER_SESSION_THREADS_FIELD_NUMBER int পাবলিক স্ট্যাটিক ফাইনাল

ধ্রুবক মান: 9

পাবলিক পদ্ধতি

পাবলিক বুলিয়ানে রয়েছে ডিভাইস কাউন্ট (স্ট্রিং কী)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

পাবলিক বুলিয়ান সমান (অবজেক্ট অবজেক্ট)

পাবলিক বুলিয়ান getAllowSoftPlacement ()

 Whether soft placement is allowed. If allow_soft_placement is true,
 an op will be placed on CPU if
   1. there's no GPU implementation for the OP
 or
   2. no GPU devices are known or registered
 or
   3. need to co-locate with reftype input(s) which are from CPU.
 
bool allow_soft_placement = 7;

সর্বজনীন ClusterDef getClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

সর্বজনীন ClusterDefOrBuilder getClusterDefOrBuilder ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

পাবলিক স্ট্যাটিক কনফিগপ্রোটো getDefaultInstance ()

সর্বজনীন ConfigProto getDefaultInstanceForType ()

পাবলিক স্ট্যাটিক ফাইনাল com.google.protobuf.Descriptors.Descriptor getDescriptor ()

সর্বজনীন মানচিত্র<স্ট্রিং, পূর্ণসংখ্যা> getDeviceCount ()

পরিবর্তে getDeviceCountMap() ব্যবহার করুন।

পাবলিক int getDeviceCountCount ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

সর্বজনীন মানচিত্র<স্ট্রিং, পূর্ণসংখ্যা> getDeviceCountMap ()

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

পাবলিক int getDeviceCountOrDefault (স্ট্রিং কী, int defaultValue)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

পাবলিক int getDeviceCountOrThrow (স্ট্রিং কী)

 Map from device type name (e.g., "CPU" or "GPU" ) to maximum
 number of devices of that type to use.  If a particular device
 type is not found in the map, the system picks an appropriate
 number.
 
map<string, int32> device_count = 1;

পাবলিক স্ট্রিং getDeviceFilters (int সূচক)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

সর্বজনীন com.google.protobuf.ByteString getDeviceFiltersBytes (int index)

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

পাবলিক int getDeviceFiltersCount ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

সর্বজনীন com.google.protobuf.ProtocolStringList getDeviceFiltersList ()

 When any filters are present sessions will ignore all devices which do not
 match the filters. Each filter can be partially specified, e.g. "/job:ps"
 "/job:worker/replica:3", etc.
 
repeated string device_filters = 4;

সর্বজনীন ConfigProto. পরীক্ষামূলক getExperimental ()

.tensorflow.ConfigProto.Experimental experimental = 16;

সর্বজনীন ConfigProto.ExperimentalOrBuilder getExperimentalOrBuilder ()

.tensorflow.ConfigProto.Experimental experimental = 16;

সর্বজনীন GPUOptions getGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

সর্বজনীন GPUOptionsOrBuilder getGpuOptionsOrBuilder ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

সর্বজনীন GraphOptions getGraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

সর্বজনীন GraphOptionsOrBuilder getGraphOptionsOrBuilder ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

পাবলিক int getInterOpParallelismThreads ()

 Nodes that perform blocking operations are enqueued on a pool of
 inter_op_parallelism_threads available in each process.
 0 means the system picks an appropriate number.
 Negative means all operations are performed in caller's thread.
 Note that the first Session created in the process sets the
 number of threads for all future sessions unless use_per_session_threads is
 true or session_inter_op_thread_pool is configured.
 
int32 inter_op_parallelism_threads = 5;

পাবলিক int getIntraOpParallelismThreads ()

 The execution of an individual op (for some op types) can be
 parallelized on a pool of intra_op_parallelism_threads.
 0 means the system picks an appropriate number.
 If you create an ordinary session, e.g., from Python or C++,
 then there is exactly one intra op thread pool per process.
 The first session created determines the number of threads in this pool.
 All subsequent sessions reuse/share this one global pool.
 There are notable exceptions to the default behavior describe above:
 1. There is an environment variable  for overriding this thread pool,
    named TF_OVERRIDE_GLOBAL_THREADPOOL.
 2. When connecting to a server, such as a remote `tf.train.Server`
    instance, then this option will be ignored altogether.
 
int32 intra_op_parallelism_threads = 2;

পাবলিক বুলিয়ান getIsolateSessionState ()

 If true, any resources such as Variables used in the session will not be
 shared with other sessions. However, when clusterspec propagation is
 enabled, this field is ignored and sessions are always isolated.
 
bool isolate_session_state = 15;

পাবলিক বুলিয়ান getLogDevicePlacement ()

 Whether device placements should be logged.
 
bool log_device_placement = 8;

সর্বজনীন দীর্ঘ getOperationTimeoutInMs ()

 Global timeout for all blocking operations in this session.  If non-zero,
 and not overridden on a per-operation basis, this value will be used as the
 deadline for all blocking operations.
 
int64 operation_timeout_in_ms = 11;

পাবলিক getParserForType ()

পাবলিক int getPlacementPeriod ()

 Assignment of Nodes to Devices is recomputed every placement_period
 steps until the system warms up (at which point the recomputation
 typically slows down automatically).
 
int32 placement_period = 3;

পাবলিক RPCOptions getRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

সর্বজনীন RPCOptionsOrBuilder getRpcOptionsOrBuilder ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

পাবলিক int getSerializedSize ()

পাবলিক ThreadPoolOptionProto getSessionInterOpThreadPool (int সূচক)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

পাবলিক int getSessionInterOpThreadPoolCount ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

সর্বজনীন তালিকা< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

সর্বজনীন ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int সূচক)

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

সর্বজনীন তালিকা <? ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList () প্রসারিত করে

 This option is experimental - it may be replaced with a different mechanism
 in the future.
 Configures session thread pools. If this is configured, then RunOptions for
 a Run call can select the thread pool to use.
 The intended use is for when some session invocations need to run in a
 background pool limited to a small number of threads:
 - For example, a session may be configured to have one large pool (for
 regular compute) and one small pool (for periodic, low priority work);
 using the small pool is currently the mechanism for limiting the inter-op
 parallelism of the low priority work.  Note that it does not limit the
 parallelism of work spawned by a single op kernel implementation.
 - Using this setting is normally not needed in training, but may help some
 serving use cases.
 - It is also generally recommended to set the global_name field of this
 proto, to avoid creating multiple large pools. It is typically better to
 run the non-low-priority work, even across sessions, in a single large
 pool.
 
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;

পাবলিক বুলিয়ান getShareClusterDevicesInSession ()

 When true, WorkerSessions are created with device attributes from the
 full cluster.
 This is helpful when a worker wants to partition a graph
 (for example during a PartitionedCallOp).
 
bool share_cluster_devices_in_session = 17;

সর্বজনীন চূড়ান্ত com.google.protobuf.UnknownFieldSet getUnknownFields ()

পাবলিক বুলিয়ান getUsePerSessionThreads ()

 If true, use a new set of threads for this session rather than the global
 pool of threads. Only supported by direct sessions.
 If false, use the global threads created by the first session, or the
 per-session thread pools configured by session_inter_op_thread_pool.
 This option is deprecated. The same effect can be achieved by setting
 session_inter_op_thread_pool to have one element, whose num_threads equals
 inter_op_parallelism_threads.
 
bool use_per_session_threads = 9;

পাবলিক বুলিয়ান hasClusterDef ()

 Optional list of all workers to use in this session.
 
.tensorflow.ClusterDef cluster_def = 14;

পাবলিক বুলিয়ান আছে এক্সপেরিমেন্টাল ()

.tensorflow.ConfigProto.Experimental experimental = 16;

পাবলিক বুলিয়ান hasGpuOptions ()

 Options that apply to all GPUs.
 
.tensorflow.GPUOptions gpu_options = 6;

পাবলিক বুলিয়ান আছে GraphOptions ()

 Options that apply to all graphs.
 
.tensorflow.GraphOptions graph_options = 10;

পাবলিক বুলিয়ান hasRpcOptions ()

 Options that apply when this session uses the distributed runtime.
 
.tensorflow.RPCOptions rpc_options = 13;

পাবলিক int হ্যাশকোড ()

সর্বজনীন চূড়ান্ত বুলিয়ান শুরু হয়েছে ()

পাবলিক স্ট্যাটিক ConfigProto.Builder newBuilder ()

পাবলিক স্ট্যাটিক ConfigProto.Builder newBuilder ( ConfigProto প্রোটোটাইপ)

সর্বজনীন ConfigProto.Builder newBuilderForType ()

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্স ডিলিমিটেডফ্রম (ইনপুটস্ট্রিম ইনপুট)

নিক্ষেপ করে
IO ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সডিলিমিটেডফ্রম (ইনপুটস্ট্রিম ইনপুট, com.google.protobuf.ExtensionRegistryLite এক্সটেনশনরেজিস্ট্রি)

নিক্ষেপ করে
IO ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (ByteBuffer ডেটা, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

নিক্ষেপ করে
অবৈধ প্রোটোকলবাফার ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (com.google.protobuf.CodedInputStream ইনপুট)

নিক্ষেপ করে
IO ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (বাইট[] ডেটা, com.google.protobuf.ExtensionRegistryLite এক্সটেনশন রেজিস্ট্রি)

নিক্ষেপ করে
অবৈধ প্রোটোকলবাফার ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (বাইটবাফার ডেটা)

নিক্ষেপ করে
অবৈধ প্রোটোকলবাফার ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (com.google.protobuf.CodedInputStream ইনপুট, com.google.protobuf.ExtensionRegistryLite এক্সটেনশন রেজিস্ট্রি)

নিক্ষেপ করে
IO ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (com.google.protobuf.ByteString ডেটা)

নিক্ষেপ করে
অবৈধ প্রোটোকলবাফার ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (ইনপুটস্ট্রিম ইনপুট, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

নিক্ষেপ করে
IO ব্যতিক্রম

পাবলিক স্ট্যাটিক কনফিগপ্রোটো পার্সফ্রম (com.google.protobuf.ByteString ডেটা, com.google.protobuf.ExtensionRegistryLite extensionRegistry)

নিক্ষেপ করে
অবৈধ প্রোটোকলবাফার ব্যতিক্রম

পাবলিক স্ট্যাটিক পার্সার ()

সর্বজনীন ConfigProto.Builder to Builder ()

public void writeTo (com.google.protobuf.CodedOutputStream আউটপুট)

নিক্ষেপ করে
IO ব্যতিক্রম