Session configuration parameters. The system picks appropriate values for fields that are not set.
tensorflow.ConfigProto
Metodi pubblici
ConfigProto.Builder | addAllDeviceFilters (valori Iterable<String>) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | addAllSessionInterOpThreadPool (Iterable<? estende ThreadPoolOptionProto > valori) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addDeviceFilters (valore stringa) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | addDeviceFiltersBytes (valore com.google.protobuf.ByteString) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto) |
ConfigProto.Builder | addSessionInterOpThreadPool (valore ThreadPoolOptionProto ) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addSessionInterOpThreadPool (indice int, valore ThreadPoolOptionProto ) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addSessionInterOpThreadPool ( ThreadPoolOptionProto.Builder builderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addSessionInterOpThreadPool (indice int, ThreadPoolOptionProto.Builder builderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProto.Builder | addSessionInterOpThreadPoolBuilder (indice int) This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProto.Builder | addSessionInterOpThreadPoolBuilder () This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto | costruire () |
ConfigProto | buildPartial () |
ConfigProto.Builder | chiaro () |
ConfigProto.Builder | clearAllowSoftPlacement () Whether soft placement is allowed. |
ConfigProto.Builder | clearClusterDef () Optional list of all workers to use in this session. |
ConfigProto.Builder | |
ConfigProto.Builder | clearDeviceFilters () When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | clearSperimentale () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | clearField (campo com.google.protobuf.Descriptors.FieldDescriptor) |
ConfigProto.Builder | opzioniclearGpu () Options that apply to all GPUs. |
ConfigProto.Builder | clearGraphOptions () Options that apply to all graphs. |
ConfigProto.Builder | clearInterOpParallelismThread () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
ConfigProto.Builder | clearIntraOpParallelismThread () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
ConfigProto.Builder | clearIsolateSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
ConfigProto.Builder | clearLogDevicePlacement () Whether device placements should be logged. |
ConfigProto.Builder | clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof) |
ConfigProto.Builder | clearOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
ConfigProto.Builder | clearPlacementPeriod () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
ConfigProto.Builder | clearRpcOptions () Options that apply when this session uses the distributed runtime. |
ConfigProto.Builder | clearSessionInterOpThreadPool () This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | clearShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
ConfigProto.Builder | clearUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
ConfigProto.Builder | clone () |
booleano | contieneDeviceCount (chiave String) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
booleano | getAllowSoftPlacement () Whether soft placement is allowed. |
ClusterDef | getClusterDef () Optional list of all workers to use in this session. |
ClusterDef.Builder | getClusterDefBuilder () Optional list of all workers to use in this session. |
ClusterDefOrBuilder | getClusterDefOrBuilder () Optional list of all workers to use in this session. |
ConfigProto | |
com.google.protobuf.Descriptors.Descriptor statico finale | |
com.google.protobuf.Descriptors.Descriptor | |
Mappa<Stringa, Intero> | getDeviceCount () Utilizzare invece getDeviceCountMap() . |
int | getDeviceCountCount () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
Mappa<Stringa, Intero> | getDeviceCountMap () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
int | getDeviceCountOrDefault (chiave String, int defaultValue) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
int | getDeviceCountOrThrow (chiave String) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
Corda | getDeviceFilters (indice int) When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ByteString | getDeviceFiltersBytes (indice int) When any filters are present sessions will ignore all devices which do not match the filters. |
int | getDeviceFiltersCount () When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ProtocolStringList | getDeviceFiltersList () When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Experimental | getExperimental () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Experimental.Builder | getExperimentalBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.ExperimentalOrBuilder | getExperimentalOrBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
Opzioni GPU | getGpuOptions () Options that apply to all GPUs. |
GPUOptions.Builder | getGpuOptionsBuilder () Options that apply to all GPUs. |
GPUOptionsOrBuilder | getGpuOptionsOrBuilder () Options that apply to all GPUs. |
OpzioniGrafico | getOpzioniGrafico () Options that apply to all graphs. |
GraphOptions.Builder | getGraphOptionsBuilder () Options that apply to all graphs. |
GraphOptionsOrBuilder | getOpzioniGraphOrBuilder () Options that apply to all graphs. |
int | getInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
int | getIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
booleano | getIsolateSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
booleano | getLogDevicePlacement () Whether device placements should be logged. |
Mappa<Stringa, Intero> | getMutableDeviceCount () Utilizzare invece accessori di mutazione alternativi. |
lungo | getOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
int | getPlacementPeriod () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
RPCOptions | getRpcOptions () Options that apply when this session uses the distributed runtime. |
RPCOptions.Builder | getRpcOptionsBuilder () Options that apply when this session uses the distributed runtime. |
RPCOptionsOrBuilder | getRpcOptionsOrBuilder () Options that apply when this session uses the distributed runtime. |
ThreadPoolOptionProto | getSessionInterOpThreadPool (indice int) This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProto.Builder | getSessionInterOpThreadPoolBuilder (indice int) This option is experimental - it may be replaced with a different mechanism in the future. |
Elenco< ThreadPoolOptionProto.Builder > | getSessionInterOpThreadPoolBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
int | getSessionInterOpThreadPoolCount () This option is experimental - it may be replaced with a different mechanism in the future. |
Elenco< ThreadPoolOptionProto > | getSessionInterOpThreadPoolList () This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProtoOrBuilder | getSessionInterOpThreadPoolOrBuilder (indice int) This option is experimental - it may be replaced with a different mechanism in the future. |
Elenco<? estende ThreadPoolOptionProtoOrBuilder > | getSessionInterOpThreadPoolOrBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
booleano | getShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
booleano | getUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
booleano | hasClusterDef () Optional list of all workers to use in this session. |
booleano | haSperimentale () .tensorflow.ConfigProto.Experimental experimental = 16; |
booleano | hasGpuOptions () Options that apply to all GPUs. |
booleano | haOpzioniGrafico () Options that apply to all graphs. |
booleano | hasRpcOptions () Options that apply when this session uses the distributed runtime. |
booleano finale | |
ConfigProto.Builder | |
ConfigProto.Builder | mergeExperimental (valore ConfigProto.Experimental ) .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | mergeFrom (com.google.protobuf.Message altro) |
ConfigProto.Builder | mergeFrom (input com.google.protobuf.CodedInputStream, estensione com.google.protobuf.ExtensionRegistryLiteRegistry) |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | mergeRpcOptions (valore RPCOptions ) Options that apply when this session uses the distributed runtime. |
finale ConfigProto.Builder | mergeUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields) |
ConfigProto.Builder | putAllDeviceCount (valori Map<String, Integer>) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ConfigProto.Builder | putDeviceCount (chiave String, valore int) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ConfigProto.Builder | rimuoviDeviceCount (chiave String) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ConfigProto.Builder | rimuoviSessionInterOpThreadPool (indice int) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | setAllowSoftPlacement (valore booleano) Whether soft placement is allowed. |
ConfigProto.Builder | setClusterDef ( ClusterDef.Builder builderForValue) Optional list of all workers to use in this session. |
ConfigProto.Builder | |
ConfigProto.Builder | setDeviceFilters (indice int, valore stringa) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | setExperimental (valore ConfigProto.Experimental ) .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | setExperimental ( ConfigProto.Experimental.Builder builderForValue) .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto) |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | setInterOpParallelismThreads (valore int) Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
ConfigProto.Builder | setIntraOpParallelismThreads (valore int) The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
ConfigProto.Builder | setIsolateSessionState (valore booleano) If true, any resources such as Variables used in the session will not be shared with other sessions. |
ConfigProto.Builder | setLogDevicePlacement (valore booleano) Whether device placements should be logged. |
ConfigProto.Builder | setOperationTimeoutInMs (valore lungo) Global timeout for all blocking operations in this session. |
ConfigProto.Builder | setPlacementPeriod (valore int) Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
ConfigProto.Builder | setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, indice int, valore oggetto) |
ConfigProto.Builder | setRpcOptions (valore RPCOptions ) Options that apply when this session uses the distributed runtime. |
ConfigProto.Builder | setRpcOptions ( RPCOptions.Builder builderForValue) Options that apply when this session uses the distributed runtime. |
ConfigProto.Builder | setSessionInterOpThreadPool (indice int, valore ThreadPoolOptionProto ) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | setSessionInterOpThreadPool (indice int, ThreadPoolOptionProto.Builder builderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | setShareClusterDevicesInSession (valore booleano) When true, WorkerSessions are created with device attributes from the full cluster. |
finale ConfigProto.Builder | setUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields) |
ConfigProto.Builder | setUsePerSessionThreads (valore booleano) If true, use a new set of threads for this session rather than the global pool of threads. |
Metodi ereditati
Metodi pubblici
public ConfigProto.Builder addAllDeviceFilters (valori Iterable<String>)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder addAllSessionInterOpThreadPool (Iterable<? estende ThreadPoolOptionProto > valori)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addDeviceFilters (valore stringa)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder addDeviceFiltersBytes (valore com.google.protobuf.ByteString)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder addRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto)
public ConfigProto.Builder addSessionInterOpThreadPool (valore ThreadPoolOptionProto )
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addSessionInterOpThreadPool (indice int, valore ThreadPoolOptionProto )
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addSessionInterOpThreadPool ( ThreadPoolOptionProto.Builder builderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addSessionInterOpThreadPool (indice int, ThreadPoolOptionProto.Builder builderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProto.Builder addSessionInterOpThreadPoolBuilder (indice int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProto.Builder addSessionInterOpThreadPoolBuilder ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder clearAllowSoftPlacement ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
public ConfigProto.Builder clearClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder clearDeviceFilters ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder clearExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder clearGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder clearGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder clearInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
public ConfigProto.Builder clearIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
public ConfigProto.Builder clearIsolateSessionState ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
public ConfigProto.Builder clearLogDevicePlacement ()
Whether device placements should be logged.
bool log_device_placement = 8;
public ConfigProto.Builder clearOperationTimeoutInMs ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
public ConfigProto.Builder clearPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
pubblico ConfigProto.Builder clearRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ConfigProto.Builder clearSessionInterOpThreadPool ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder clearShareClusterDevicesInSession ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
public ConfigProto.Builder clearUsePerSessionThreads ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
booleano pubblico contieneDeviceCount (chiave String)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
pubblico booleano getAllowSoftPlacement ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
pubblico ClusterDef getClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ClusterDef.Builder getClusterDefBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ClusterDefOrBuilder getClusterDefOrBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
pubblico com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
public int getDeviceCountCount ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public Map<String, Integer> getDeviceCountMap ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public int getDeviceCountOrDefault (chiave String, int defaultValue)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public int getDeviceCountOrThrow (chiave String)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public String getDeviceFilters (indice int)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
pubblico com.google.protobuf.ByteString getDeviceFiltersBytes (indice int)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public int getDeviceFiltersCount ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public com.google.protobuf.ProtocolStringList getDeviceFiltersList ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Experimental getExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Experimental.Builder getExperimentalBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.ExperimentalOrBuilder getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public GPUOptions getGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
pubblico GPUOptions.Builder getGpuOptionsBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public GPUOptionsOrBuilder getGpuOptionsOrBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public GraphOptions getGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public GraphOptions.Builder getGraphOptionsBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public GraphOptionsOrBuilder getGraphOptionsOrBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public int getInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
public int getIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
pubblico booleano getIsolateSessionState ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
pubblico booleano getLogDevicePlacement ()
Whether device placements should be logged.
bool log_device_placement = 8;
public Map<String, Integer> getMutableDeviceCount ()
Utilizzare invece accessori di mutazione alternativi.
pubblico lungo getOperationTimeoutInMs ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
public int getPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
public RPCOptions getRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public RPCOptions.Builder getRpcOptionsBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public RPCOptionsOrBuilder getRpcOptionsOrBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ThreadPoolOptionProto getSessionInterOpThreadPool (indice int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProto.Builder getSessionInterOpThreadPoolBuilder (indice int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
Elenco pubblico< ThreadPoolOptionProto.Builder > getSessionInterOpThreadPoolBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public int getSessionInterOpThreadPoolCount ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
Elenco pubblico< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (indice int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
Elenco pubblico<? estende ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
pubblico booleano getShareClusterDevicesInSession ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
pubblico booleano getUsePerSessionThreads ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
hasClusterDef pubblico booleano ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public booleano hasExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
hasGpuOptions booleano pubblico ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
hasGraphOptions booleano pubblico ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
hasRpcOptions booleano pubblico ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public final booleano isInitialized ()
public ConfigProto.Builder mergeClusterDef (valore ClusterDef )
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder mergeExperimental (valore ConfigProto.Experimental )
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder mergeFrom (input com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lancia
IOException |
---|
public ConfigProto.Builder mergeGpuOptions (valore GPUOptions )
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder mergeGraphOptions (valore GraphOptions )
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder mergeRpcOptions (valore RPCOptions )
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public final ConfigProto.Builder mergeUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields)
public ConfigProto.Builder putAllDeviceCount (valori Map<String, Integer>)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public ConfigProto.Builder putDeviceCount (chiave String, valore int)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public ConfigProto.BuilderremoveDeviceCount ( chiave stringa)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public ConfigProto.BuilderremoveSessionInterOpThreadPool ( indice int)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder setAllowSoftPlacement (valore booleano)
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
public ConfigProto.Builder setClusterDef ( ClusterDef.Builder builderForValue)
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder setClusterDef (valore ClusterDef )
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder setDeviceFilters (indice int, valore stringa)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder setExperimental (valore ConfigProto.Experimental )
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder setExperimental ( ConfigProto.Experimental.Builder builderForValue)
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder setField (campo com.google.protobuf.Descriptors.FieldDescriptor, valore oggetto)
public ConfigProto.Builder setGpuOptions ( GPUOptions.Builder builderForValue)
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder setGpuOptions (valore GPUOptions )
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder setGraphOptions ( GraphOptions.Builder builderForValue)
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder setGraphOptions (valore GraphOptions )
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder setInterOpParallelismThreads (valore int)
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
public ConfigProto.Builder setIntraOpParallelismThreads (valore int)
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
public ConfigProto.Builder setIsolateSessionState (valore booleano)
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
public ConfigProto.Builder setLogDevicePlacement (valore booleano)
Whether device placements should be logged.
bool log_device_placement = 8;
public ConfigProto.Builder setOperationTimeoutInMs (valore lungo)
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
public ConfigProto.Builder setPlacementPeriod (valore int)
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
public ConfigProto.Builder setRepeatedField (campo com.google.protobuf.Descriptors.FieldDescriptor, indice int, valore oggetto)
public ConfigProto.Builder setRpcOptions (valore RPCOptions )
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ConfigProto.Builder setRpcOptions ( RPCOptions.Builder builderForValue)
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ConfigProto.Builder setSessionInterOpThreadPool (indice int, valore ThreadPoolOptionProto )
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder setSessionInterOpThreadPool (indice int, ThreadPoolOptionProto.Builder builderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder setShareClusterDevicesInSession (valore booleano)
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
public final ConfigProto.Builder setUnknownFields (com.google.protobuf.UnknownFieldSet UnknownFields)
public ConfigProto.Builder setUsePerSessionThreads (valore booleano)
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;