Session configuration parameters. The system picks appropriate values for fields that are not set.
tensorflow.ConfigProto
सार्वजनिक तरीके
कॉन्फिगप्रोटो.बिल्डर | addAllDeviceFilters (इटरेबल<स्ट्रिंग> मान) When any filters are present sessions will ignore all devices which do not match the filters. |
कॉन्फिगप्रोटो.बिल्डर | addAllSessionInterOpThreadPool (Iterable<? विस्तार ThreadPoolOptionProto > मान) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | addDeviceFilters (स्ट्रिंग मान) When any filters are present sessions will ignore all devices which do not match the filters. |
कॉन्फिगप्रोटो.बिल्डर | addDeviceFiltersBytes (com.google.protobuf.ByteString मान) When any filters are present sessions will ignore all devices which do not match the filters. |
कॉन्फिगप्रोटो.बिल्डर | addRepeatedField (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड, ऑब्जेक्ट मान) |
कॉन्फिगप्रोटो.बिल्डर | addSessionInterOpThreadPool ( ThreadPoolOptionProto मान) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | addSessionInterOpThreadPool (int अनुक्रमणिका, ThreadPoolOptionProto मान) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | addSessionInterOpThreadPool ( ThreadPoolOptionProto.Builder BuilderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | addSessionInterOpThreadPool (int इंडेक्स, ThreadPoolOptionProto.Builder BuilderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
थ्रेडपूलऑप्शनप्रोटो.बिल्डर | addSessionInterOpThreadPoolBuilder (int अनुक्रमणिका) This option is experimental - it may be replaced with a different mechanism in the future. |
थ्रेडपूलऑप्शनप्रोटो.बिल्डर | addSessionInterOpThreadPoolBuilder () This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फ़िगप्रोटो | निर्माण () |
कॉन्फ़िगप्रोटो | बिल्डआंशिक () |
कॉन्फिगप्रोटो.बिल्डर | स्पष्ट () |
कॉन्फिगप्रोटो.बिल्डर | क्लियरअल्लोसॉफ्टप्लेसमेंट () Whether soft placement is allowed. |
कॉन्फिगप्रोटो.बिल्डर | क्लियरक्लस्टरडेफ़ () Optional list of all workers to use in this session. |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | क्लियरडिवाइसफ़िल्टर () When any filters are present sessions will ignore all devices which do not match the filters. |
कॉन्फिगप्रोटो.बिल्डर | स्पष्टप्रयोगात्मक () .tensorflow.ConfigProto.Experimental experimental = 16; |
कॉन्फिगप्रोटो.बिल्डर | क्लियरफ़ील्ड (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड) |
कॉन्फिगप्रोटो.बिल्डर | क्लियरजीपीयूऑप्शंस () Options that apply to all GPUs. |
कॉन्फिगप्रोटो.बिल्डर | क्लीयरग्राफऑप्शंस () Options that apply to all graphs. |
कॉन्फिगप्रोटो.बिल्डर | ClearInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
कॉन्फिगप्रोटो.बिल्डर | ClearIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
कॉन्फिगप्रोटो.बिल्डर | क्लियरआइसोलेटसेशनस्टेट () If true, any resources such as Variables used in the session will not be shared with other sessions. |
कॉन्फिगप्रोटो.बिल्डर | क्लियरलॉगडिवाइसप्लेसमेंट () Whether device placements should be logged. |
कॉन्फिगप्रोटो.बिल्डर | ClearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof) |
कॉन्फिगप्रोटो.बिल्डर | क्लियरऑपरेशनटाइमआउटइनएमएस () Global timeout for all blocking operations in this session. |
कॉन्फिगप्रोटो.बिल्डर | क्लियरप्लेसमेंटअवधि () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
कॉन्फिगप्रोटो.बिल्डर | क्लियरआरपीसीऑप्शंस () Options that apply when this session uses the distributed runtime. |
कॉन्फिगप्रोटो.बिल्डर | क्लियरसेशनइंटरऑपथ्रेडपूल () This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | क्लियरशेयरक्लस्टरडिवाइसेसइनसेशन () When true, WorkerSessions are created with device attributes from the full cluster. |
कॉन्फिगप्रोटो.बिल्डर | ClearUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
कॉन्फिगप्रोटो.बिल्डर | क्लोन () |
बूलियन | इसमेंडिवाइसकाउंट (स्ट्रिंग कुंजी) शामिल है Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
बूलियन | GetAllowSoftPlacement () Whether soft placement is allowed. |
क्लस्टरडेफ़ | getClusterDef () Optional list of all workers to use in this session. |
क्लस्टरडेफ़.बिल्डर | getClusterDefBuilder () Optional list of all workers to use in this session. |
क्लस्टरडिफऑरबिल्डर | getClusterDefOrBuilder () Optional list of all workers to use in this session. |
कॉन्फ़िगप्रोटो | |
अंतिम स्थिर com.google.protobuf.Descriptors.Descriptor | |
com.google.protobuf.Descriptors.Descriptor | |
मानचित्र<स्ट्रिंग, पूर्णांक> | getDeviceCount () इसके बजाय getDeviceCountMap() उपयोग करें। |
int यहाँ | getDeviceCountCount () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
मानचित्र<स्ट्रिंग, पूर्णांक> | getDeviceCountMap () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
int यहाँ | getDeviceCountOrDefault (स्ट्रिंग कुंजी, int defaultValue) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
int यहाँ | getDeviceCountOrThrow (स्ट्रिंग कुंजी) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
डोरी | getDeviceFilters (इंट इंडेक्स) When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ByteString | getDeviceFiltersBytes (इंट इंडेक्स) When any filters are present sessions will ignore all devices which do not match the filters. |
int यहाँ | getDeviceFiltersCount () When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ProtocolStringList | getDeviceFiltersList () When any filters are present sessions will ignore all devices which do not match the filters. |
कॉन्फिगप्रोटो.प्रायोगिक | प्रयोगात्मक प्राप्त करें () .tensorflow.ConfigProto.Experimental experimental = 16; |
कॉन्फिगप्रोटो.प्रायोगिक.बिल्डर | getExperimentalBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
कॉन्फिगप्रोटो.एक्सपेरिमेंटलऑरबिल्डर | getExperimentalOrBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
जीपीयू विकल्प | getGpuOptions () Options that apply to all GPUs. |
GPUOptions.बिल्डर | getGpuOptionsBuilder () Options that apply to all GPUs. |
GPUOptionsOrBuilder | getGpuOptionsOrBuilder () Options that apply to all GPUs. |
ग्राफ़ विकल्प | गेटग्राफऑप्शंस () Options that apply to all graphs. |
ग्राफ़ऑप्शंस.बिल्डर | getGraphOptionsBuilder () Options that apply to all graphs. |
ग्राफ़ऑप्शनऑरबिल्डर | getGraphOptionsOrBuilder () Options that apply to all graphs. |
int यहाँ | getInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
int यहाँ | getIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
बूलियन | getIsolatSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
बूलियन | getLogDevicePlacement () Whether device placements should be logged. |
मानचित्र<स्ट्रिंग, पूर्णांक> | getMutableDeviceCount () इसके बजाय वैकल्पिक उत्परिवर्तन एक्सेसर्स का उपयोग करें। |
लंबा | getOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
int यहाँ | प्लेसमेंटअवधि प्राप्त करें () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
आरपीसीओ विकल्प | getRpcOptions () Options that apply when this session uses the distributed runtime. |
RPCOptions.बिल्डर | getRpcOptionsBuilder () Options that apply when this session uses the distributed runtime. |
आरपीसीओप्शनऑरबिल्डर | getRpcOptionsOrBuilder () Options that apply when this session uses the distributed runtime. |
थ्रेडपूलऑप्शनप्रोटो | getSessionInterOpThreadPool (int अनुक्रमणिका) This option is experimental - it may be replaced with a different mechanism in the future. |
थ्रेडपूलऑप्शनप्रोटो.बिल्डर | getSessionInterOpThreadPoolBuilder (int अनुक्रमणिका) This option is experimental - it may be replaced with a different mechanism in the future. |
सूची < ThreadPoolOptionProto.Builder > | getSessionInterOpThreadPoolBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
int यहाँ | getSessionInterOpThreadPoolCount () This option is experimental - it may be replaced with a different mechanism in the future. |
सूची < थ्रेडपूलऑप्शनप्रोटो > | getSessionInterOpThreadPoolList () This option is experimental - it may be replaced with a different mechanism in the future. |
थ्रेडपूलऑप्शनप्रोटोऑरबिल्डर | getSessionInterOpThreadPoolOrBuilder (int अनुक्रमणिका) This option is experimental - it may be replaced with a different mechanism in the future. |
सूची<? ThreadPoolOptionProtoOrBuilder > का विस्तार करता है | getSessionInterOpThreadPoolOrBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
बूलियन | getShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
बूलियन | getUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
बूलियन | हैक्लस्टरडिफ () Optional list of all workers to use in this session. |
बूलियन | प्रयोगात्मक है () .tensorflow.ConfigProto.Experimental experimental = 16; |
बूलियन | hasGpuOptions () Options that apply to all GPUs. |
बूलियन | हैग्राफ़ विकल्प () Options that apply to all graphs. |
बूलियन | hasRpcOptions () Options that apply when this session uses the distributed runtime. |
अंतिम बूलियन | |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | मर्जफ्रॉम (com.google.protobuf.Message अन्य) |
कॉन्फिगप्रोटो.बिल्डर | मर्जफ्रॉम (com.google.protobuf.CodedInputStream इनपुट, com.google.protobuf.ExtensionRegistryLite एक्सटेंशनरजिस्ट्री) |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | mergeRpcOptions ( RPCOptions मान) Options that apply when this session uses the distributed runtime. |
अंतिम कॉन्फिगप्रोटो.बिल्डर | मर्जअज्ञातफ़ील्ड्स (com.google.protobuf.UnknownFieldSet अज्ञातफ़ील्ड्स) |
कॉन्फिगप्रोटो.बिल्डर | putAllDeviceCount (मानचित्र<स्ट्रिंग, पूर्णांक> मान) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
कॉन्फिगप्रोटो.बिल्डर | putDeviceCount (स्ट्रिंग कुंजी, int मान) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
कॉन्फिगप्रोटो.बिल्डर | रिमूवडिवाइसकाउंट (स्ट्रिंग कुंजी) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
कॉन्फिगप्रोटो.बिल्डर | रिमूवसेशनइंटरऑपथ्रेडपूल (इंट इंडेक्स) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | setAllowSoftPlacement (बूलियन मान) Whether soft placement is allowed. |
कॉन्फिगप्रोटो.बिल्डर | सेटक्लस्टरडिफ ( क्लस्टरडिफ.बिल्डर बिल्डरफॉरवैल्यू) Optional list of all workers to use in this session. |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | setDeviceFilters (इंट इंडेक्स, स्ट्रिंग मान) When any filters are present sessions will ignore all devices which do not match the filters. |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | सेटएक्सपेरिमेंटल ( ConfigProto.Experimental.Builder BuilderForValue) .tensorflow.ConfigProto.Experimental experimental = 16; |
कॉन्फिगप्रोटो.बिल्डर | सेटफ़ील्ड (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड, ऑब्जेक्ट मान) |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | setInterOpParallelismThreads (int मान) Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
कॉन्फिगप्रोटो.बिल्डर | setIntraOpParallelismThreads (int मान) The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
कॉन्फिगप्रोटो.बिल्डर | setIslateSessionState (बूलियन मान) If true, any resources such as Variables used in the session will not be shared with other sessions. |
कॉन्फिगप्रोटो.बिल्डर | सेटलॉगडिवाइसप्लेसमेंट (बूलियन मान) Whether device placements should be logged. |
कॉन्फिगप्रोटो.बिल्डर | setOperationTimeoutInMs (लंबा मान) Global timeout for all blocking operations in this session. |
कॉन्फिगप्रोटो.बिल्डर | सेटप्लेसमेंटपीरियोड (int मान) Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
कॉन्फिगप्रोटो.बिल्डर | setRepeatedField (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड, इंट इंडेक्स, ऑब्जेक्ट वैल्यू) |
कॉन्फिगप्रोटो.बिल्डर | |
कॉन्फिगप्रोटो.बिल्डर | setRpcOptions ( RPCOptions.Builder BuilderForValue) Options that apply when this session uses the distributed runtime. |
कॉन्फिगप्रोटो.बिल्डर | setSessionInterOpThreadPool (int अनुक्रमणिका, ThreadPoolOptionProto मान) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | setSessionInterOpThreadPool (int इंडेक्स, ThreadPoolOptionProto.Builder BuilderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
कॉन्फिगप्रोटो.बिल्डर | setShareClusterDevicesInSession (बूलियन मान) When true, WorkerSessions are created with device attributes from the full cluster. |
अंतिम कॉन्फिगप्रोटो.बिल्डर | अज्ञात फ़ील्ड सेट करें (com.google.protobuf. अज्ञात फ़ील्ड सेट अज्ञात फ़ील्ड) |
कॉन्फिगप्रोटो.बिल्डर | setUsePerSessionThreads (बूलियन मान) If true, use a new set of threads for this session rather than the global pool of threads. |
विरासत में मिली विधियाँ
सार्वजनिक तरीके
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addAllDeviceFilters (Iterable<String> मान)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addAllSessionInterOpThreadPool (Iterable<? विस्तार ThreadPoolOptionProto > मान)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर ऐडडिवाइसफ़िल्टर (स्ट्रिंग मान)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addDeviceFiltersBytes (com.google.protobuf.ByteString मान)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addRepeatedField (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड, ऑब्जेक्ट मान)
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addSessionInterOpThreadPool ( ThreadPoolOptionProto मान)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addSessionInterOpThreadPool (int अनुक्रमणिका, ThreadPoolOptionProto मान)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर addSessionInterOpThreadPool ( ThreadPoolOptionProto.Builder BuilderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर ऐडसेशनइंटरऑपथ्रेडपूल (इंट इंडेक्स, थ्रेडपूलऑप्शनप्रोटो.बिल्डर बिल्डरफॉरवैल्यू)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक ThreadPoolOptionProto.Builder addSessionInterOpThreadPoolBuilder (int अनुक्रमणिका)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक ThreadPoolOptionProto.Builder addSessionInterOpThreadPoolBuilder ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरअल्लोसॉफ्टप्लेसमेंट ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरक्लस्टरडिफ ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरडिवाइसफ़िल्टर ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर स्पष्टप्रायोगिक ()
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरफ़ील्ड (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड)
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरजीपीयूऑप्शन ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरग्राफऑप्शन ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरइंटरऑपपैरेललिज्मथ्रेड्स ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरइंट्राऑपपैरेललिज्मथ्रेड्स ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरआइसोलेटसेशनस्टेट ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरलॉगडिवाइसप्लेसमेंट ()
Whether device placements should be logged.
bool log_device_placement = 8;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरऑपरेशनटाइमआउटइनएमएस ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरप्लेसमेंटपीरियोड ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरआरपीसीऑप्शन ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर क्लियरसेशनइंटरऑपथ्रेडपूल ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरशेयरक्लस्टरडिवाइसेसइनसेशन ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर क्लियरयूज़परसेशनथ्रेड्स ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
सार्वजनिक बूलियन में डिवाइसकाउंट (स्ट्रिंग कुंजी) शामिल है
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक बूलियन getAllowSoftPlacement ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
सार्वजनिक क्लस्टरडिफ getClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक ClusterDef.Builder getClusterDefBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक ClusterDefOrBuilder getClusterDefOrBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक स्थैतिक अंतिम com.google.protobuf.Descriptors.Descriptor getDescriptor ()
सार्वजनिक com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
सार्वजनिक int getDeviceCountCount ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक मानचित्र<स्ट्रिंग, पूर्णांक> getDeviceCountMap ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक int getDeviceCountOrDefault (स्ट्रिंग कुंजी, int defaultValue)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक int getDeviceCountOrThrow (स्ट्रिंग कुंजी)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक स्ट्रिंग getDeviceFilters (int अनुक्रमणिका)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक com.google.protobuf.ByteString getDeviceFiltersBytes (int अनुक्रमणिका)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक int getDeviceFiltersCount ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक com.google.protobuf.ProtocolStringList getDeviceFiltersList ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक कॉन्फ़िगप्रोटो.प्रायोगिक getExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक configProto.Experimental.Builder getExperimentalBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक कॉन्फिगप्रोटो.एक्सपेरिमेंटलऑरबिल्डर गेटएक्सपेरिमेंटलऑरबिल्डर ()
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक GPUOptions getGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक GPUOptions.Builder getGpuOptionsBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक GPUOptionsOrBuilder getGpuOptionsOrBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक ग्राफ़ऑप्शंस getGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक GraphOptions.Builder getGraphOptionsBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक GraphOptionsOrBuilder getGraphOptionsOrBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक int getInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
सार्वजनिक int getIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
सार्वजनिक बूलियन getIslateSessionState ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
सार्वजनिक बूलियन getLogDevicePlacement ()
Whether device placements should be logged.
bool log_device_placement = 8;
सार्वजनिक मानचित्र<स्ट्रिंग, पूर्णांक> getMutableDeviceCount ()
इसके बजाय वैकल्पिक उत्परिवर्तन एक्सेसर्स का उपयोग करें।
सार्वजनिक लंबे getOperationTimeoutInMs ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
सार्वजनिक पूर्णांक getPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
सार्वजनिक RPCOptions getRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक RPCOptions.Builder getRpcOptionsBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक RPCOptionsOrBuilder getRpcOptionsOrBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक ThreadPoolOptionProto getSessionInterOpThreadPool (int अनुक्रमणिका)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक ThreadPoolOptionProto.Builder getSessionInterOpThreadPoolBuilder (int अनुक्रमणिका)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक सूची < ThreadPoolOptionProto.Builder > getSessionInterOpThreadPoolBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक int getSessionInterOpThreadPoolCount ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक सूची < ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int अनुक्रमणिका)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक सूची<? ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList () का विस्तार करता है
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक बूलियन getShareClusterDevicesInSession ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
सार्वजनिक बूलियन getUsePerSessionThreads ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
सार्वजनिक बूलियन hasClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक बूलियन में प्रायोगिक () है
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक बूलियन hasGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक बूलियन hasGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक बूलियन hasRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक अंतिम बूलियन आरंभीकृत है ()
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर मर्जक्लस्टरडिफ ( क्लस्टरडिफ मान)
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर मर्जप्रायोगिक ( कॉन्फ़िगप्रोटो.प्रायोगिक मान)
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर मर्जफ्रॉम (com.google.protobuf.CodedInputStream इनपुट, com.google.protobuf.ExtensionRegistryLite एक्सटेंशनरजिस्ट्री)
फेंकता
आईओ अपवाद |
---|
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर मर्जGpuOptions ( GPUOptions मान)
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर मर्जग्राफऑप्शन ( ग्राफऑप्शन मान)
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर मर्जआरपीसीऑप्शन ( आरपीसीऑप्शन मान)
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक अंतिम कॉन्फ़िगप्रोटो.बिल्डर मर्जअज्ञातफ़ील्ड्स (com.google.protobuf.UnknownFieldSet अज्ञातफ़ील्ड्स)
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर पुटऑलडिवाइसकाउंट (मैप<स्ट्रिंग, इंटीजर> मान)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर पुटडिवाइसकाउंट (स्ट्रिंग कुंजी, इंट वैल्यू)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर रिमूवडिवाइसकाउंट (स्ट्रिंग कुंजी)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर रिमूवसेशनइंटरऑपथ्रेडपूल (इंट इंडेक्स)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटअल्लोसॉफ्टप्लेसमेंट (बूलियन मान)
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटक्लस्टरडिफ ( ClusterDef.Builder BuilderForValue)
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटक्लस्टरडिफ ( क्लस्टरडिफ मान)
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटडिवाइसफ़िल्टर (इंट इंडेक्स, स्ट्रिंग मान)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटप्रायोगिक ( कॉन्फ़िगप्रोटो.प्रायोगिक मान)
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटएक्सपेरिमेंटल ( कॉन्फ़िगप्रोटो.एक्सपेरिमेंटल.बिल्डर बिल्डरफॉरवैल्यू)
.tensorflow.ConfigProto.Experimental experimental = 16;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटफ़ील्ड (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड, ऑब्जेक्ट मान)
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटGpuOptions ( GPUOptions.Builder BuilderForValue)
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटGpuOptions ( GPUOptions मान)
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटग्राफऑप्शंस ( ग्राफऑप्शंस.बिल्डर बिल्डरफॉरवैल्यू)
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटग्राफऑप्शन ( ग्राफऑप्शन मान)
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटइंटरऑपपैरेललिज्मथ्रेड्स (इंट वैल्यू)
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटइंट्राऑपपैरेललिज्मथ्रेड्स (इंट वैल्यू)
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटआइसोलेटसेशनस्टेट (बूलियन मान)
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटलॉगडिवाइसप्लेसमेंट (बूलियन मान)
Whether device placements should be logged.
bool log_device_placement = 8;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटऑपरेशनटाइमआउटइनएमएस (लंबा मान)
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटप्लेसमेंटपीरियोड (int मान)
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटरिपीटेडफ़ील्ड (com.google.protobuf.Descriptors.FieldDescriptor फ़ील्ड, इंट इंडेक्स, ऑब्जेक्ट वैल्यू)
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटआरपीऑप्शन ( आरपीसीऑप्शन मान)
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटआरपीसीऑप्शंस ( आरपीसीऑप्शंस.बिल्डर बिल्डरफॉरवैल्यू)
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटसेशनइंटरऑपथ्रेडपूल (इंट इंडेक्स, थ्रेडपूलऑप्शनप्रोटो वैल्यू)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फिगप्रोटो.बिल्डर सेटसेशनइंटरऑपथ्रेडपूल (इंट इंडेक्स, थ्रेडपूलऑप्शनप्रोटो.बिल्डर बिल्डरफॉरवैल्यू)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटशेयरक्लस्टरडिवाइसेसइनसेशन (बूलियन मान)
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
सार्वजनिक अंतिम कॉन्फ़िगप्रोटो.बिल्डर सेटअज्ञातफ़ील्ड्स (com.google.protobuf.UnknownFieldSet अज्ञातफ़ील्ड्स)
सार्वजनिक कॉन्फ़िगप्रोटो.बिल्डर सेटयूज़परसेशनथ्रेड्स (बूलियन मान)
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;