ResourceSparseApplyProximalGradientDescent คลาสสุดท้ายสาธารณะ
การอัปเดตแบบกระจัดกระจาย '*var' เป็นอัลกอริทึม FOBOS พร้อมอัตราการเรียนรู้คงที่
นั่นคือสำหรับแถวที่เรามี grad เราอัปเดต var ดังนี้: prox_v = var - alpha grad var = sign(prox_v)/(1+alpha l2) max{|prox_v|-alpha l1,0}
คลาสที่ซ้อนกัน
ระดับ | ResourceSparseApplyProximalGradientDescent.Options | แอ็ตทริบิวต์ทางเลือกสำหรับ ResourceSparseApplyProximalGradientDescent |
ค่าคงที่
สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสาธารณะ
คงที่ <T ขยาย TType > ResourceSparseApplyProximalGradientDescent | สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <?> var, ตัวดำเนินการ <T> อัลฟา, ตัวดำเนินการ <T> l1, ตัวดำเนินการ <T> l2, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก) วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ResourceSparseApplyProximalGradientDescent ใหม่ |
ResourceSparseApplyProximalGradientDescent.Options แบบคงที่ | useLocking (การใช้ล็อคแบบบูลีน) |
วิธีการสืบทอด
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
ค่าคงที่: "ResourceSparseApplyProximalGradientDescent"
วิธีการสาธารณะ
ResourceSparseApplyProximalGradientDescent สาธารณะแบบคงที่ สร้าง (ขอบเขต ขอบเขต , ตัวดำเนินการ <?> var, ตัวดำเนินการ <T> อัลฟา, ตัวดำเนินการ <T> l1, ตัวดำเนินการ <T> l2, ตัว ดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวดำเนินการ <? ขยาย TNumber > ดัชนี, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ResourceSparseApplyProximalGradientDescent ใหม่
พารามิเตอร์
ขอบเขต | ขอบเขตปัจจุบัน |
---|---|
var | ควรมาจากตัวแปร () |
อัลฟ่า | ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์ |
l1 | การทำให้เป็นมาตรฐาน L1 ต้องเป็นสเกลาร์ |
l2 | การทำให้เป็นมาตรฐานของ L2 ต้องเป็นสเกลาร์ |
ผู้สำเร็จการศึกษา | การไล่ระดับสี |
ดัชนี | เวกเตอร์ของดัชนีในมิติแรกของ var และ accum |
ตัวเลือก | มีค่าแอตทริบิวต์ทางเลือก |
การส่งคืน
- อินสแตนซ์ใหม่ของ ResourceSparseApplyProximalGradientDescent
สาธารณะ ResourceSparseApplyProximalGradientDescent.Options useLocking (useLocking แบบบูลีน)
พารามิเตอร์
ใช้ล็อค | ถ้าเป็นจริง การลบจะถูกป้องกันด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง |
---|