public final class
ResourceSparseApplyAdagradDa
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
Nested Classes
class | ResourceSparseApplyAdagradDa.Options | Optional attributes for ResourceSparseApplyAdagradDa
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
static <T extends TType> ResourceSparseApplyAdagradDa |
create(Scope scope, Operand<?> var, Operand<?> gradientAccumulator, Operand<?> gradientSquaredAccumulator, Operand<T> grad, Operand<? extends TNumber> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<TInt64> globalStep, Options... options)
Factory method to create a class wrapping a new ResourceSparseApplyAdagradDa operation.
|
static ResourceSparseApplyAdagradDa.Options |
useLocking(Boolean useLocking)
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Constant Value:
"ResourceSparseApplyAdagradDA"
Public Methods
public static ResourceSparseApplyAdagradDa create (Scope scope, Operand<?> var, Operand<?> gradientAccumulator, Operand<?> gradientSquaredAccumulator, Operand<T> grad, Operand<? extends TNumber> indices, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<TInt64> globalStep, Options... options)
Factory method to create a class wrapping a new ResourceSparseApplyAdagradDa operation.
Parameters
scope | current scope |
---|---|
var | Should be from a Variable(). |
gradientAccumulator | Should be from a Variable(). |
gradientSquaredAccumulator | Should be from a Variable(). |
grad | The gradient. |
indices | A vector of indices into the first dimension of var and accum. |
lr | Learning rate. Must be a scalar. |
l1 | L1 regularization. Must be a scalar. |
l2 | L2 regularization. Must be a scalar. |
globalStep | Training step number. Must be a scalar. |
options | carries optional attributes values |
Returns
- a new instance of ResourceSparseApplyAdagradDa
public static ResourceSparseApplyAdagradDa.Options useLocking (Boolean useLocking)
Parameters
useLocking | If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
---|