एडडेल्टा योजना के अनुसार '*var' को अपडेट करें।
Accum = rho() * Accum + (1 - rho()) * grad.square(); अद्यतन = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var - = अद्यतन;
नेस्टेड क्लासेस
कक्षा | रिसोर्सएप्लाईएडेल्टा.विकल्प | ResourceApplyAdadelta के लिए वैकल्पिक विशेषताएँ |
स्थिरांक
डोरी | OP_NAME | इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है |
सार्वजनिक तरीके
स्थिर <टी टीटाइप का विस्तार करता है > रिसोर्सएप्लाईएडेल्टा | |
स्टेटिक रिसोर्सएप्लाईएडेल्टा.ऑप्शंस | यूज़लॉकिंग (बूलियन यूज़लॉकिंग) |
विरासत में मिली विधियाँ
स्थिरांक
सार्वजनिक स्थैतिक अंतिम स्ट्रिंग OP_NAME
इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है
सार्वजनिक तरीके
सार्वजनिक स्थैतिक रिसोर्सएप्लाईएडेल्टा क्रिएट ( स्कोप स्कोप, ऑपरेंड <?> वर, ऑपरेंड <?> एक्युम, ऑपरेंड <?> एक्यूमअपडेट, ऑपरेंड <टी> एलआर, ऑपरेंड <टी> आरएचओ, ऑपरेंड <टी> एप्सिलॉन, ऑपरेंड <टी> ग्रेड, विकल्प... विकल्प)
एक नए रिसोर्सएप्लाईएडेल्टा ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।
पैरामीटर
दायरा | वर्तमान दायरा |
---|---|
वर | एक वेरिएबल() से होना चाहिए। |
जमा | एक वेरिएबल() से होना चाहिए। |
संचित अद्यतन | एक वेरिएबल() से होना चाहिए। |
एलआर | मापन कारक। एक अदिश राशि होनी चाहिए. |
रो | क्षय कारक. एक अदिश राशि होनी चाहिए. |
एप्सिलॉन | निरंतर कारक. एक अदिश राशि होनी चाहिए. |
ग्रैड | ढाल. |
विकल्प | वैकल्पिक गुण मान रखता है |
रिटर्न
- रिसोर्सएप्लाईएडेल्टा का एक नया उदाहरण
सार्वजनिक स्थैतिक रिसोर्सएप्लाईएडडेल्टा.ऑप्शंस यूज़लॉकिंग (बूलियन यूज़लॉकिंग)
पैरामीटर
लॉकिंग का उपयोग करें | यदि सही है, तो var, accum और update_accum टेंसर का अद्यतनीकरण लॉक द्वारा सुरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है। |
---|