निश्चित सीखने की दर के साथ '*var' को FOBOS एल्गोरिदम के रूप में अपडेट करें।
prox_v = var - अल्फा डेल्टा var = साइन(prox_v)/(1+अल्फा l2) अधिकतम{|prox_v|-अल्फा l1,0}
नेस्टेड क्लासेस
कक्षा | ProximalGradientDescent.Options लागू करें | ApplyProximalGradientDescent के लिए वैकल्पिक विशेषताएँ |
स्थिरांक
डोरी | OP_NAME | इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है |
सार्वजनिक तरीके
आउटपुट <T> | आउटपुट के रूप में () टेंसर का प्रतीकात्मक हैंडल लौटाता है। |
स्थिर <T टीटाइप का विस्तार करता है > ApplyProximalGradientDescent <T> | |
आउटपुट <T> | बाहर () "var" के समान। |
स्थिर ApplyProximalGradientDescent.Options | यूज़लॉकिंग (बूलियन यूज़लॉकिंग) |
विरासत में मिली विधियाँ
स्थिरांक
सार्वजनिक स्थैतिक अंतिम स्ट्रिंग OP_NAME
इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है
सार्वजनिक तरीके
सार्वजनिक आउटपुट <T> asOutput ()
टेंसर का प्रतीकात्मक हैंडल लौटाता है।
TensorFlow संचालन के इनपुट किसी अन्य TensorFlow ऑपरेशन के आउटपुट हैं। इस पद्धति का उपयोग एक प्रतीकात्मक हैंडल प्राप्त करने के लिए किया जाता है जो इनपुट की गणना का प्रतिनिधित्व करता है।
सार्वजनिक स्थैतिक ApplyProximalGradientDescent <T> बनाएं ( स्कोप स्कोप, ऑपरेंड <T> var, ऑपरेंड <T> अल्फा, ऑपरेंड <T> l1, ऑपरेंड <T> l2, ऑपरेंड <T> डेल्टा, विकल्प... विकल्प)
एक नए ApplyProximalGradientDescent ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।
पैरामीटर
दायरा | वर्तमान दायरा |
---|---|
वर | एक वेरिएबल() से होना चाहिए। |
अल्फा | मापन कारक। एक अदिश राशि होनी चाहिए. |
एल1 | एल1 नियमितीकरण. एक अदिश राशि होनी चाहिए. |
एल2 | L2 नियमितीकरण. एक अदिश राशि होनी चाहिए. |
डेल्टा | परिवर्तन। |
विकल्प | वैकल्पिक गुण मान रखता है |
रिटर्न
- ApplyProximalGradientDescent का एक नया उदाहरण
सार्वजनिक स्थैतिक ApplyProximalGradientDescent.Options यूज़लॉकिंग (बूलियन यूज़लॉकिंग)
पैरामीटर
लॉकिंग का उपयोग करें | यदि सत्य है, तो घटाव को ताले द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है। |
---|