ApplyProximalAdagrad

คลาสสุดท้ายสาธารณะ ApplyProximalAdagrad

อัปเดต '*var' และ '*accum' ตาม FOBOS ด้วยอัตราการเรียนรู้ของ Adagrad

สะสม += ผู้สำเร็จการศึกษา grad prox_v = var - lr grad (1 / sqrt(accum)) var = sign(prox_v)/(1+lr l2) สูงสุด{|prox_v|-lr l1,0}

คลาสที่ซ้อนกัน

ระดับ ApplyProximalAdagrad.Options คุณลักษณะเพิ่มเติมสำหรับ ApplyProximalAdagrad

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

เอาท์พุต <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
คงที่ <T ขยาย TType > ApplyProximalAdagrad <T>
สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> สะสม, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> l1, ตัวดำเนินการ <T> l2, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyProximalAdagrad ใหม่
เอาท์พุต <T>
ออก ()
เช่นเดียวกับ "var"
ApplyProximalAdagrad.Options แบบคงที่
useLocking (การใช้ล็อคแบบบูลีน)

วิธีการสืบทอด

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "ApplyProximalAdagrad"

วิธีการสาธารณะ

เอาท์ พุท สาธารณะ <T> asOutput ()

ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์

อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต

สาธารณะ ApplyProximalAdagrad <T> สร้าง แบบคงที่ (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> accum, ตัวดำเนิน การ <T> lr, ตัวดำเนินการ <T> l1, ตัวดำเนินการ <T> l2, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวเลือก.. . ตัวเลือก)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyProximalAdagrad ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
var ควรมาจากตัวแปร ()
สะสม ควรมาจากตัวแปร ()
ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์
l1 การทำให้เป็นมาตรฐาน L1 ต้องเป็นสเกลาร์
l2 การทำให้เป็นมาตรฐานของ L2 ต้องเป็นสเกลาร์
ผู้สำเร็จการศึกษา การไล่ระดับสี
ตัวเลือก มีค่าแอตทริบิวต์ทางเลือก
การส่งคืน
  • อินสแตนซ์ใหม่ของ ApplyProximalAdagrad

เอาท์พุท สาธารณะ <T> ออก ()

เช่นเดียวกับ "var"

สาธารณะ ApplyProximalAdagrad.Options useLocking (useLocking แบบบูลีน)

พารามิเตอร์
ใช้ล็อค หากเป็น True การอัปเดต var และ accum tensor จะได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง