ApplyCenteredRmsProp

คลาสสุดท้ายสาธารณะ ApplyCenteredRmsProp

อัปเดต '*var' ตามอัลกอริทึม RMSProp ที่อยู่กึ่งกลาง

อัลกอริธึม RMSProp ที่มีศูนย์กลางใช้การประมาณค่าของโมเมนต์ที่สองที่อยู่ตรงกลาง (เช่น ความแปรปรวน) สำหรับการทำให้เป็นมาตรฐาน ตรงข้ามกับ RMSProp ปกติ ซึ่งใช้โมเมนต์ที่สอง (ไม่อยู่ศูนย์กลาง) ซึ่งมักจะช่วยในการฝึกอบรม แต่จะมีราคาแพงกว่าเล็กน้อยในแง่ของการคำนวณและหน่วยความจำ

โปรดทราบว่าในการใช้อัลกอริธึมนี้อย่างหนาแน่น mg, ms และ mom จะอัปเดตแม้ว่าผู้สำเร็จการศึกษาจะเป็นศูนย์ แต่ในการใช้งานแบบเบาบางนี้ mg, ms และ mom จะไม่อัปเดตในการวนซ้ำในระหว่างที่ผู้สำเร็จการศึกษาเป็นศูนย์

Mean_square = การสลาย * Mean_Square + (1-การสลายตัว) * การไล่ระดับสี ** 2 Mean_grad = การสลาย * Mean_grad + (1-การสลายตัว) * การไล่ระดับสี

เดลต้า = อัตราการเรียนรู้ * การไล่ระดับสี / sqrt (mean_square + epsilon - meme_grad ** 2)

mg <- rho * mg_{t-1} + (1-rho) * grad ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- โมเมนตัม * mom_{t-1 } + lr * grad / sqrt(ms - mg * mg + epsilon) var <- var - แม่

คลาสที่ซ้อนกัน

ระดับ ApplyCenteredRmsProp.Options แอ็ตทริบิวต์ทางเลือกสำหรับ ApplyCenteredRmsProp

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

เอาท์พุต <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
คงที่ <T ขยาย TType > ApplyCenteredRmsProp <T>
สร้าง ( ขอบเขต ขอบเขต ตัวดำเนินการ <T> var, ตัว ดำเนินการ <T> mg, ตัว ถูกดำเนินการ <T> ms, ตัวถูกดำเนินการ <T> mom, ตัวถูกดำเนินการ <T> lr, ตัวถูกดำเนินการ <T> rho, ตัวถูกดำเนินการ <T> โมเมนตัม, ตัว ถูกดำเนินการ <T > เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวเลือก... ตัวเลือก)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyCenteredRmsProp ใหม่
เอาท์พุต <T>
ออก ()
เช่นเดียวกับ "var"
ApplyCenteredRmsProp.Options แบบคงที่
useLocking (การใช้ล็อคแบบบูลีน)

วิธีการสืบทอด

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "ApplyCenteredRMSProp"

วิธีการสาธารณะ

เอาท์ พุท สาธารณะ <T> asOutput ()

ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์

อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต

สาธารณะ ApplyCenteredRmsProp <T> สร้าง (ขอบเขต ขอบเขต , ตัวดำเนินการ <T> var, ตัวดำเนินการ <T> mg, ตัวดำเนินการ <T> ms, ตัวดำเนินการ <T> แม่, ตัวดำเนินการ <T> lr, ตัวดำเนินการ <T> rho, ตัวดำเนินการ <T > โมเมนตัม, ตัวดำเนินการ <T> เอปไซลอน, ตัวดำเนินการ <T> ผู้สำเร็จการศึกษา, ตัวเลือก... ตัวเลือก)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ ApplyCenteredRmsProp ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
var ควรมาจากตัวแปร ()
มก ควรมาจากตัวแปร ()
นางสาว ควรมาจากตัวแปร ()
แม่ ควรมาจากตัวแปร ()
ปัจจัยการปรับขนาด ต้องเป็นสเกลาร์
โร อัตราการสลายตัว ต้องเป็นสเกลาร์
โมเมนตัม ระดับโมเมนตัม ต้องเป็นสเกลาร์
เอปไซลอน ระยะริดจ์ ต้องเป็นสเกลาร์
ผู้สำเร็จการศึกษา การไล่ระดับสี
ตัวเลือก มีค่าแอตทริบิวต์ทางเลือก
การส่งคืน
  • อินสแตนซ์ใหม่ของ ApplyCenteredRmsProp

เอาท์พุท สาธารณะ <T> ออก ()

เช่นเดียวกับ "var"

สาธารณะ ApplyCenteredRmsProp.Options useLocking แบบคงที่ (useLocking แบบบูลีน)

พารามิเตอร์
ใช้ล็อค หากเป็น "จริง" การอัปเดต var, mg, ms และ mom tensors ได้รับการปกป้องด้วยการล็อค มิฉะนั้นพฤติกรรมจะไม่ได้กำหนดไว้ แต่อาจแสดงความขัดแย้งน้อยลง