ApplyCenteredRmsProp

classe finale publique ApplyCenteredRmsProp

Mettez à jour '*var' selon l'algorithme RMSProp centré.

L'algorithme RMSProp centré utilise une estimation du deuxième moment centré (c'est-à-dire la variance) pour la normalisation, par opposition au RMSProp normal, qui utilise le deuxième moment (non centré). Cela facilite souvent la formation, mais coûte légèrement plus cher en termes de calcul et de mémoire.

Notez que dans une implémentation dense de cet algorithme, mg, ms et mom seront mis à jour même si le grad est nul, mais dans cette implémentation clairsemée, mg, ms et mom ne seront pas mis à jour dans les itérations pendant lesquelles le grad est nul.

Mean_square = décroissance * Mean_square + (1-décroissance) * gradient ** 2 Mean_grad = décroissance * Mean_grad + (1-décroissance) * gradient

Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2)

mg <- rho * mg_{t-1} + (1-rho) * diplômé ms <- rho * ms_{t-1} + (1-rho) * diplômé * diplômé maman <- élan * mom_{t-1 } + lr * grad / sqrt(ms - mg * mg + epsilon) var <- var - maman

Classes imbriquées

classe ApplyCenteredRmsProp.Options Attributs facultatifs pour ApplyCenteredRmsProp

Constantes

Chaîne OP_NAME Le nom de cette opération, tel que connu par le moteur principal TensorFlow

Méthodes publiques

Sortie <T>
comme Sortie ()
Renvoie le handle symbolique du tenseur.
statique <T étend TType > ApplyCenteredRmsProp <T>
créer ( Scope scope, Opérande <T> var, Opérande <T> mg, Opérande <T> ms, Opérande <T> mom, Opérande <T> lr, Opérande <T> rho, Opérande <T> momentum, Opérande <T > epsilon, Opérande <T> grad, Options... options)
Méthode d'usine pour créer une classe encapsulant une nouvelle opération ApplyCenteredRmsProp.
Sortie <T>
dehors ()
Identique à "var".
statique ApplyCenteredRmsProp.Options
useLocking (booléen useLocking)

Méthodes héritées

Constantes

chaîne finale statique publique OP_NAME

Le nom de cette opération, tel que connu par le moteur principal TensorFlow

Valeur constante : "ApplyCenteredRMSProp"

Méthodes publiques

sortie publique <T> asOutput ()

Renvoie le handle symbolique du tenseur.

Les entrées des opérations TensorFlow sont les sorties d'une autre opération TensorFlow. Cette méthode est utilisée pour obtenir un handle symbolique qui représente le calcul de l’entrée.

public static ApplyCenteredRmsProp <T> create ( Scope scope, Operand <T> var, Operand <T> mg, Operand <T> ms, Operand <T> mom, Operand <T> lr, Operand <T> rho, Operand <T > élan, Opérande <T> epsilon, Opérande <T> grad, Options... options)

Méthode d'usine pour créer une classe encapsulant une nouvelle opération ApplyCenteredRmsProp.

Paramètres
portée portée actuelle
var Doit provenir d'une variable ().
mg Doit provenir d'une variable ().
MS Doit provenir d'une variable ().
maman Doit provenir d'une variable ().
g / D Facteur d'échelle. Ça doit être un scalaire.
rho Taux de décomposition. Ça doit être un scalaire.
élan Échelle d'élan. Ça doit être un scalaire.
épsilon Terme de crête. Ça doit être un scalaire.
diplômé Le dégradé.
choix porte des valeurs d'attributs facultatifs
Retour
  • une nouvelle instance de ApplyCenteredRmsProp

sortie publique <T> out ()

Identique à "var".

public static ApplyCenteredRmsProp.Options useLocking (booléen useLocking)

Paramètres
utiliserVerrouillage Si « True », la mise à jour des tenseurs var, mg, ms et mom est protégée par un verrou ; sinon, le comportement n'est pas défini, mais peut présenter moins de conflits.