ApplyCenteredRmsProp

পাবলিক ফাইনাল ক্লাস ApplyCenteredRmsProp

কেন্দ্রীভূত RMSProp অ্যালগরিদম অনুযায়ী '*var' আপডেট করুন।

কেন্দ্রীভূত RMSProp অ্যালগরিদম স্বাভাবিকীকরণের জন্য কেন্দ্রীভূত দ্বিতীয় মুহূর্ত (অর্থাৎ, প্রকরণ) একটি অনুমান ব্যবহার করে, নিয়মিত RMSProp এর বিপরীতে, যা (অকেন্দ্রহীন) দ্বিতীয় মুহূর্ত ব্যবহার করে। এটি প্রায়শই প্রশিক্ষণে সহায়তা করে, তবে গণনা এবং মেমরির ক্ষেত্রে এটি কিছুটা বেশি ব্যয়বহুল।

মনে রাখবেন যে এই অ্যালগরিদমের ঘন বাস্তবায়নে, mg, ms, এবং mom আপডেট হবে এমনকি গ্র্যাড শূন্য হলেও, কিন্তু এই স্পার্স ইমপ্লিমেন্টেশনে, mg, ms, এবং mom পুনরাবৃত্তিতে আপডেট হবে না যেখানে গ্র্যাড শূন্য হয়।

গড়_বর্গ = ক্ষয় * গড়_বর্গ + (1-ক্ষয়) * গ্রেডিয়েন্ট ** 2 গড়_গ্রাড = ক্ষয় * গড়_গ্রাড + (1-ক্ষয়) * গ্রেডিয়েন্ট

ডেল্টা = লার্নিং_রেট * গ্রেডিয়েন্ট / sqrt(মান_বর্গ + এপসিলন - গড়_গ্রাড ** 2)

mg <- rho * mg_{t-1} + (1-rho) * grad ms <- rho * ms_{t-1} + (1-rho) * গ্র্যাড * গ্রেড মা <- ভরবেগ * মা_{t-1 } + lr * grad / sqrt(ms - mg * mg + epsilon) var <- var - মা

নেস্টেড ক্লাস

ক্লাস ApplyCenteredRmsProp.Options ApplyCenteredRmsProp এর জন্য ঐচ্ছিক বৈশিষ্ট্য

ধ্রুবক

স্ট্রিং OP_NAME এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত

পাবলিক পদ্ধতি

আউটপুট <T>
আউটপুট হিসাবে ()
টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়।
স্ট্যাটিক <T TType প্রসারিত করে > ApplyCenteredRmsProp <T>
তৈরি করুন ( স্কোপ স্কোপ, Operand <T> var, Operand <T> mg, Operand <T> ms, Operand <T> mom, Operand <T> lr, Operand <T> rho, Operand <T> ভরবেগ, Operand <T > epsilon, Operand <T> grad, Options... options)
একটি নতুন ApplyCenteredRmsProp অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।
আউটপুট <T>
আউট ()
"var" এর মতোই।
স্ট্যাটিক ApplyCenteredRmsProp.Options
ইউজ লকিং (বুলিয়ান ইউজ লকিং)

উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি

ধ্রুবক

সর্বজনীন স্ট্যাটিক চূড়ান্ত স্ট্রিং OP_NAME

এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত

ধ্রুবক মান: "ApplyCenteredRMSProp"

পাবলিক পদ্ধতি

সর্বজনীন আউটপুট <T> হিসাবে আউটপুট ()

টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়।

TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি প্রতীকী হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনাকে প্রতিনিধিত্ব করে।

পাবলিক স্ট্যাটিক ApplyCenteredRmsProp <T> তৈরি করুন ( Scope scope, Operand <T> var, Operand <T> mg, Operand <T> ms, Operand <T> mom, Operand <T> lr, Operand <T> rho, Operand <T > মোমেন্টাম, অপারেন্ড <T> এপসিলন, অপারেন্ড <T> গ্র্যাড, বিকল্প... বিকল্প)

একটি নতুন ApplyCenteredRmsProp অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানার পদ্ধতি।

পরামিতি
সুযোগ বর্তমান সুযোগ
var একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
মিলিগ্রাম একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
মাইক্রোসফট একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
মা একটি পরিবর্তনশীল() থেকে হওয়া উচিত।
lr স্কেলিং ফ্যাক্টর। একটি স্কেলার হতে হবে।
rho ক্ষয় হার. একটি স্কেলার হতে হবে।
গতিবেগ মোমেন্টাম স্কেল। একটি স্কেলার হতে হবে।
epsilon রিজ শব্দ। একটি স্কেলার হতে হবে।
স্নাতক গ্রেডিয়েন্ট।
বিকল্প ঐচ্ছিক বৈশিষ্ট্য মান বহন করে
রিটার্নস
  • ApplyCenteredRmsProp এর একটি নতুন উদাহরণ

সর্বজনীন আউটপুট <T> আউট ()

"var" এর মতোই।

পাবলিক স্ট্যাটিক ApplyCenteredRmsProp.Options useLocking (বুলিয়ান ইউজ লকিং)

পরামিতি
লকিং ব্যবহার করুন যদি `True`, var, mg, ms, এবং mom tensors-এর আপডেট একটি লক দ্বারা সুরক্ষিত থাকে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে।