public final class
ApplyAdagradDa
Update '*var' according to the proximal adagrad scheme.
Nested Classes
class | ApplyAdagradDa.Options | Optional attributes for ApplyAdagradDa
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
Output<T> |
asOutput()
Returns the symbolic handle of the tensor.
|
static <T extends TType> ApplyAdagradDa<T> | |
Output<T> |
out()
Same as "var".
|
static ApplyAdagradDa.Options |
useLocking(Boolean useLocking)
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Constant Value:
"ApplyAdagradDA"
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static ApplyAdagradDa<T> create (Scope scope, Operand<T> var, Operand<T> gradientAccumulator, Operand<T> gradientSquaredAccumulator, Operand<T> grad, Operand<T> lr, Operand<T> l1, Operand<T> l2, Operand<TInt64> globalStep, Options... options)
Factory method to create a class wrapping a new ApplyAdagradDa operation.
Parameters
scope | current scope |
---|---|
var | Should be from a Variable(). |
gradientAccumulator | Should be from a Variable(). |
gradientSquaredAccumulator | Should be from a Variable(). |
grad | The gradient. |
lr | Scaling factor. Must be a scalar. |
l1 | L1 regularization. Must be a scalar. |
l2 | L2 regularization. Must be a scalar. |
globalStep | Training step number. Must be a scalar. |
options | carries optional attributes values |
Returns
- a new instance of ApplyAdagradDa
public static ApplyAdagradDa.Options useLocking (Boolean useLocking)
Parameters
useLocking | If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
---|