ApplyAdagrad

सार्वजनिक अंतिम कक्षा ApplyAdagrad

एडाग्रेड योजना के अनुसार '*var' को अपडेट करें।

Accum += ग्रेड * ग्रेड var -= lr * ग्रेड * (1 / sqrt(accum))

नेस्टेड क्लासेस

कक्षा Adagrad.विकल्प लागू करें ApplyAdagrad के लिए वैकल्पिक विशेषताएँ

स्थिरांक

डोरी OP_NAME इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है

सार्वजनिक तरीके

आउटपुट <T>
आउटपुट के रूप में ()
टेंसर का प्रतीकात्मक हैंडल लौटाता है।
स्थिर <T टीटाइप का विस्तार करता है > ApplyAdagrad <T>
बनाएं ( स्कोप स्कोप, ऑपरेंड <T> var, ऑपरेंड <T> जमा, ऑपरेंड <T> एलआर, ऑपरेंड <T> ग्रेड, विकल्प... विकल्प)
एक नए ApplyAdagrad ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।
आउटपुट <T>
बाहर ()
"var" के समान।
स्थिर ApplyAdagrad.Options
अपडेटस्लॉट्स (बूलियन अपडेटस्लॉट्स)
स्थिर ApplyAdagrad.Options
यूज़लॉकिंग (बूलियन यूज़लॉकिंग)

विरासत में मिली विधियाँ

स्थिरांक

सार्वजनिक स्थैतिक अंतिम स्ट्रिंग OP_NAME

इस ऑप का नाम, जैसा कि TensorFlow कोर इंजन द्वारा जाना जाता है

स्थिर मान: "अप्लाईएडाग्रेड"

सार्वजनिक तरीके

सार्वजनिक आउटपुट <T> asOutput ()

टेंसर का प्रतीकात्मक हैंडल लौटाता है।

TensorFlow संचालन के इनपुट किसी अन्य TensorFlow ऑपरेशन के आउटपुट हैं। इस पद्धति का उपयोग एक प्रतीकात्मक हैंडल प्राप्त करने के लिए किया जाता है जो इनपुट की गणना का प्रतिनिधित्व करता है।

सार्वजनिक स्थैतिक ApplyAdagrad <T> बनाएं ( स्कोप स्कोप, ऑपरेंड <T> var, ऑपरेंड <T> संचित, ऑपरेंड <T> एलआर, ऑपरेंड <T> ग्रेड, विकल्प... विकल्प)

एक नए ApplyAdagrad ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।

पैरामीटर
दायरा वर्तमान दायरा
वर एक वेरिएबल() से होना चाहिए।
जमा एक वेरिएबल() से होना चाहिए।
एलआर मापन कारक। एक अदिश राशि होनी चाहिए.
ग्रैड ढाल.
विकल्प वैकल्पिक गुण मान रखता है
रिटर्न
  • ApplyAdagrad का एक नया उदाहरण

सार्वजनिक आउटपुट <T> आउट ()

"var" के समान।

सार्वजनिक स्थैतिक ApplyAdagrad.Options अपडेटस्लॉट्स (बूलियन अपडेटस्लॉट्स)

सार्वजनिक स्थैतिक ApplyAdagrad.Options यूज़लॉकिंग (बूलियन यूज़लॉकिंग)

पैरामीटर
लॉकिंग का उपयोग करें यदि `सही` है, तो var और Accum Tensors का अद्यतनीकरण एक लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है।