অ্যাডেলটা স্কিম অনুযায়ী '*var' আপডেট করুন।
accum = rho() * accum + (1 - rho()) * grad.square(); update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var -= আপডেট;
নেস্টেড ক্লাস
ক্লাস | Adadelta.Options প্রয়োগ করুন | ApplyAdadelta এর জন্য ঐচ্ছিক বৈশিষ্ট্য |
ধ্রুবক
স্ট্রিং | OP_NAME | এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত |
পাবলিক পদ্ধতি
আউটপুট <T> | আউটপুট হিসাবে () টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়। |
স্ট্যাটিক <T TType প্রসারিত করে > ApplyAdadelta <T> | |
আউটপুট <T> | আউট () "var" এর মতোই। |
স্ট্যাটিক ApplyAdadelta.Options | ইউজ লকিং (বুলিয়ান ইউজ লকিং) |
উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি
ধ্রুবক
সর্বজনীন স্ট্যাটিক চূড়ান্ত স্ট্রিং OP_NAME
এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত
পাবলিক পদ্ধতি
সর্বজনীন আউটপুট <T> হিসাবে আউটপুট ()
টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়।
TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি প্রতীকী হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনাকে প্রতিনিধিত্ব করে।
পাবলিক স্ট্যাটিক প্রয়োগ করুন অ্যাডাডেল্টা <T> তৈরি করুন ( স্কোপ স্কোপ, অপারেন্ড <T> var, অপারেন্ড <T> accum, Operand <T> accumUpdate, Operand <T> lr, Operand <T> rho, Operand <T> epsilon, Operand <T > স্নাতক, বিকল্প... বিকল্প)
একটি নতুন ApplyAdadelta অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানা পদ্ধতি।
পরামিতি
সুযোগ | বর্তমান সুযোগ |
---|---|
var | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
accum | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
accumupdate | একটি পরিবর্তনশীল() থেকে হওয়া উচিত। |
lr | স্কেলিং ফ্যাক্টর। একটি স্কেলার হতে হবে। |
rho | ক্ষয় ফ্যাক্টর। একটি স্কেলার হতে হবে। |
epsilon | ধ্রুবক ফ্যাক্টর। একটি স্কেলার হতে হবে। |
স্নাতক | গ্রেডিয়েন্ট। |
বিকল্প | ঐচ্ছিক বৈশিষ্ট্য মান বহন করে |
রিটার্নস
- ApplyAdadelta এর একটি নতুন উদাহরণ
পাবলিক স্ট্যাটিক ApplyAdadelta.Options useLocking (বুলিয়ান ইউজ লকিং)
পরামিতি
লকিং ব্যবহার করুন | যদি সত্য হয়, var, accum এবং update_accum tensors আপডেট করা একটি লক দ্বারা সুরক্ষিত হবে; অন্যথায় আচরণটি অনির্ধারিত, তবে কম বিরোধ প্রদর্শন করতে পারে। |
---|