ApplyAdadelta

public final class ApplyAdadelta

Update '*var' according to the adadelta scheme.

accum = rho() * accum + (1 - rho()) * grad.square(); update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var -= update;

Nested Classes

class ApplyAdadelta.Options Optional attributes for ApplyAdadelta  

Constants

String OP_NAME The name of this op, as known by TensorFlow core engine

Public Methods

Output<T>
asOutput()
Returns the symbolic handle of the tensor.
static <T extends TType> ApplyAdadelta<T>
create(Scope scope, Operand<T> var, Operand<T> accum, Operand<T> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, Options... options)
Factory method to create a class wrapping a new ApplyAdadelta operation.
Output<T>
out()
Same as "var".
static ApplyAdadelta.Options
useLocking(Boolean useLocking)

Inherited Methods

Constants

public static final String OP_NAME

The name of this op, as known by TensorFlow core engine

Constant Value: "ApplyAdadelta"

Public Methods

public Output<T> asOutput ()

Returns the symbolic handle of the tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static ApplyAdadelta<T> create (Scope scope, Operand<T> var, Operand<T> accum, Operand<T> accumUpdate, Operand<T> lr, Operand<T> rho, Operand<T> epsilon, Operand<T> grad, Options... options)

Factory method to create a class wrapping a new ApplyAdadelta operation.

Parameters
scope current scope
var Should be from a Variable().
accum Should be from a Variable().
accumUpdate Should be from a Variable().
lr Scaling factor. Must be a scalar.
rho Decay factor. Must be a scalar.
epsilon Constant factor. Must be a scalar.
grad The gradient.
options carries optional attributes values
Returns
  • a new instance of ApplyAdadelta

public Output<T> out ()

Same as "var".

public static ApplyAdadelta.Options useLocking (Boolean useLocking)

Parameters
useLocking If True, updating of the var, accum and update_accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.