Computes the gradients of depthwise convolution with respect to the input.
Nested Classes
class | DepthwiseConv2dNativeBackpropInput.Options | Optional attributes for DepthwiseConv2dNativeBackpropInput
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
Output<T> |
asOutput()
Returns the symbolic handle of the tensor.
|
static <T extends TNumber> DepthwiseConv2dNativeBackpropInput<T> | |
static DepthwiseConv2dNativeBackpropInput.Options |
dataFormat(String dataFormat)
|
static DepthwiseConv2dNativeBackpropInput.Options |
dilations(List<Long> dilations)
|
static DepthwiseConv2dNativeBackpropInput.Options |
explicitPaddings(List<Long> explicitPaddings)
|
Output<T> |
output()
4-D with shape according to `data_format`.
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static DepthwiseConv2dNativeBackpropInput<T> create (Scope scope, Operand<TInt32> inputSizes, Operand<T> filter, Operand<T> outBackprop, List<Long> strides, String padding, Options... options)
Factory method to create a class wrapping a new DepthwiseConv2dNativeBackpropInput operation.
Parameters
scope | current scope |
---|---|
inputSizes | An integer vector representing the shape of `input`, based on `data_format`. For example, if `data_format` is 'NHWC' then `input` is a 4-D `[batch, height, width, channels]` tensor. |
filter | 4-D with shape `[filter_height, filter_width, in_channels, depthwise_multiplier]`. |
outBackprop | 4-D with shape based on `data_format`. For example, if `data_format` is 'NHWC' then out_backprop shape is `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution. |
strides | The stride of the sliding window for each dimension of the input of the convolution. |
padding | The type of padding algorithm to use. |
options | carries optional attributes values |
Returns
- a new instance of DepthwiseConv2dNativeBackpropInput
public static DepthwiseConv2dNativeBackpropInput.Options dataFormat (String dataFormat)
Parameters
dataFormat | Specify the data format of the input and output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width, channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels, height, width]. |
---|
public static DepthwiseConv2dNativeBackpropInput.Options dilations (List<Long> dilations)
Parameters
dilations | 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k > 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1. |
---|
public static DepthwiseConv2dNativeBackpropInput.Options explicitPaddings (List<Long> explicitPaddings)
public Output<T> output ()
4-D with shape according to `data_format`. For example, if `data_format` is 'NHWC', output shape is `[batch, in_height, in_width, in_channels]`. Gradient w.r.t. the input of the convolution.