public final class
AvgPool3dGrad
Computes gradients of average pooling function.
Nested Classes
class | AvgPool3dGrad.Options | Optional attributes for AvgPool3dGrad
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
Output<T> |
asOutput()
Returns the symbolic handle of the tensor.
|
static <T extends TNumber> AvgPool3dGrad<T> | |
static AvgPool3dGrad.Options |
dataFormat(String dataFormat)
|
Output<T> |
output()
The backprop for input.
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Constant Value:
"AvgPool3DGrad"
Public Methods
public Output<T> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static AvgPool3dGrad<T> create (Scope scope, Operand<TInt32> origInputShape, Operand<T> grad, List<Long> ksize, List<Long> strides, String padding, Options... options)
Factory method to create a class wrapping a new AvgPool3dGrad operation.
Parameters
scope | current scope |
---|---|
origInputShape | The original input dimensions. |
grad | Output backprop of shape `[batch, depth, rows, cols, channels]`. |
ksize | 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`. |
strides | 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`. |
padding | The type of padding algorithm to use. |
options | carries optional attributes values |
Returns
- a new instance of AvgPool3dGrad
public static AvgPool3dGrad.Options dataFormat (String dataFormat)
Parameters
dataFormat | The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width]. |
---|