คำนวณผลรวมตามส่วนของเทนเซอร์
อ่าน [ส่วนเกี่ยวกับการแบ่งส่วน](https://tensorflow.org/api_docs/python/tf/math#Segmentation) เพื่อดูคำอธิบายเกี่ยวกับส่วนต่างๆ
คำนวณเทนเซอร์ในลักษณะที่ \\(output_i = \sum_j data_j\\) โดยที่ผลรวมมากกว่า `j` ดังนั้น `segment_ids[j] == i`
หากผลรวมว่างเปล่าสำหรับ ID ส่วนที่กำหนด `i`, `เอาท์พุท [i] = 0`
ตัวอย่างเช่น:
c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]])
tf.segment_sum(c, tf.constant([0, 0, 1]))
# ==> [[5, 5, 5, 5],
# [5, 6, 7, 8]]
ค่าคงที่
สตริง | OP_NAME | ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow |
วิธีการสาธารณะ
เอาท์พุต <T> | เป็นเอาท์พุต () ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์ |
คงที่ <T ขยาย TType > SegmentSum <T> | สร้าง (ขอบเขต ขอบเขต ข้อมูล ตัวถูกดำเนินการ <T> ตัวถูกดำเนินการ <? ขยาย TNumber > SegmentIds) วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SegmentSum ใหม่ |
เอาท์พุต <T> | เอาท์พุท () มีรูปร่างเหมือนกับข้อมูล ยกเว้นมิติข้อมูล 0 ซึ่งมีขนาด `k` คือจำนวนส่วน |
วิธีการสืบทอด
ค่าคงที่
สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME
ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow
วิธีการสาธารณะ
เอาท์พุท สาธารณะ <T> asOutput ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต
สร้าง SegmentSum <T> แบบคงที่สาธารณะ ( ขอบเขต ขอบเขต ข้อมูล ตัวดำเนินการ <T> ตัวดำเนินการ <? ขยาย TNumber > SegmentIds)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SegmentSum ใหม่
พารามิเตอร์
ขอบเขต | ขอบเขตปัจจุบัน |
---|---|
รหัสส่วน | เทนเซอร์ 1 มิติที่มีขนาดเท่ากับขนาดของมิติแรกของ "ข้อมูล" ควรเรียงลำดับค่าและสามารถทำซ้ำได้ |
การส่งคืน
- อินสแตนซ์ใหม่ของ SegmentSum
เอาท์พุท สาธารณะ <T> เอาท์พุท ()
มีรูปร่างเหมือนกับข้อมูล ยกเว้นมิติข้อมูล 0 ซึ่งมีขนาด `k` คือจำนวนเซ็กเมนต์