SegmentMean

SegmentMean คลาสสุดท้ายสาธารณะ

คำนวณค่าเฉลี่ยตามส่วนของเทนเซอร์

อ่าน [ส่วนเกี่ยวกับการแบ่งส่วน](https://tensorflow.org/api_docs/python/tf/math#Segmentation) เพื่อดูคำอธิบายเกี่ยวกับส่วนต่างๆ

คำนวณเทนเซอร์ในลักษณะที่ \\(output_i = \frac{\sum_j data_j}{N}\\) โดยที่ `mean` อยู่เหนือ `j` โดยที่ `segment_ids[j] == i` และ `N` คือจำนวนรวมของค่าที่สรุปได้

หากค่าเฉลี่ยว่างเปล่าสำหรับ ID ส่วนที่กำหนด `i`, `เอาต์พุต [i] = 0`

ตัวอย่างเช่น:

c = tf.constant([[1.0,2,3,4], [4, 3, 2, 1], [5,6,7,8]])
 tf.segment_mean(c, tf.constant([0, 0, 1]))
 # ==> [[2.5, 2.5, 2.5, 2.5],
 #      [5, 6, 7, 8]]
 

ค่าคงที่

สตริง OP_NAME ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

วิธีการสาธารณะ

เอาท์พุต <T>
เป็นเอาท์พุต ()
ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์
คงที่ <T ขยาย TType > SegmentMean <T>
สร้าง (ขอบเขต ขอบเขต ข้อมูล ตัวถูกดำเนินการ <T> ตัวถูกดำเนินการ <? ขยาย TNumber > SegmentIds)
วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SegmentMean ใหม่
เอาท์พุต <T>
เอาท์พุท ()
มีรูปร่างเหมือนกับข้อมูล ยกเว้นมิติข้อมูล 0 ซึ่งมีขนาด `k` คือจำนวนส่วน

วิธีการสืบทอด

ค่าคงที่

สตริงสุดท้ายแบบคงที่สาธารณะ OP_NAME

ชื่อของ op นี้ ซึ่งรู้จักกันในชื่อของเอ็นจิ้นหลัก TensorFlow

ค่าคงที่: "SegmentMean"

วิธีการสาธารณะ

เอาท์พุท สาธารณะ <T> asOutput ()

ส่งกลับค่าแฮนเดิลสัญลักษณ์ของเทนเซอร์

อินพุตสำหรับการดำเนินการ TensorFlow คือเอาต์พุตของการดำเนินการ TensorFlow อื่น วิธีการนี้ใช้เพื่อรับหมายเลขอ้างอิงสัญลักษณ์ที่แสดงถึงการคำนวณอินพุต

สร้าง SegmentMean <T> แบบคงที่สาธารณะ ( ขอบเขต ขอบเขต ข้อมูล ตัวดำเนินการ <T> ตัวดำเนินการ <? ขยาย TNumber > SegmentIds)

วิธีการจากโรงงานเพื่อสร้างคลาสที่รวมการดำเนินการ SegmentMean ใหม่

พารามิเตอร์
ขอบเขต ขอบเขตปัจจุบัน
รหัสส่วน เทนเซอร์ 1 มิติที่มีขนาดเท่ากับขนาดของมิติแรกของ "ข้อมูล" ควรเรียงลำดับค่าและสามารถทำซ้ำได้
การส่งคืน
  • อินสแตนซ์ใหม่ของ SegmentMean

เอาท์พุท สาธารณะ <T> เอาท์พุท ()

มีรูปร่างเหมือนกับข้อมูล ยกเว้นมิติข้อมูล 0 ซึ่งมีขนาด `k` คือจำนวนส่วน