একটি টেনসরের অংশগুলি বরাবর গড় গণনা করে।
সেগমেন্টের ব্যাখ্যার জন্য [সেগমেন্টেশনের বিভাগ](https://tensorflow.org/api_docs/python/tf/math#Segmentation) পড়ুন।
একটি টেনসর গণনা করে যেমন \\(output_i = \frac{\sum_j data_j}{N}\\) যেখানে `mean` `j` এর উপরে যেমন `segment_ids[j] == i` এবং `N` হল মোট মানের সমষ্টি।
যদি একটি প্রদত্ত সেগমেন্ট ID `i`, `output[i] = 0` এর জন্য গড় খালি থাকে।
যেমন:
c = tf.constant([[1.0,2,3,4], [4, 3, 2, 1], [5,6,7,8]])
tf.segment_mean(c, tf.constant([0, 0, 1]))
# ==> [[2.5, 2.5, 2.5, 2.5],
# [5, 6, 7, 8]]
ধ্রুবক
স্ট্রিং | OP_NAME | এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত |
পাবলিক পদ্ধতি
আউটপুট <T> | আউটপুট হিসাবে () টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়। |
স্ট্যাটিক <T TType > সেগমেন্টমিন <T> প্রসারিত করে | |
আউটপুট <T> | আউটপুট () ডেটার মতো একই আকৃতি আছে, মাত্র 0 বাদে যার আকার `k` আছে, সেগমেন্টের সংখ্যা। |
উত্তরাধিকারসূত্রে প্রাপ্ত পদ্ধতি
ধ্রুবক
সর্বজনীন স্ট্যাটিক চূড়ান্ত স্ট্রিং OP_NAME
এই অপের নাম, টেনসরফ্লো কোর ইঞ্জিন দ্বারা পরিচিত
পাবলিক পদ্ধতি
সর্বজনীন আউটপুট <T> হিসাবে আউটপুট ()
টেনসরের প্রতীকী হ্যান্ডেল ফেরত দেয়।
TensorFlow অপারেশনের ইনপুট হল অন্য TensorFlow অপারেশনের আউটপুট। এই পদ্ধতিটি একটি সিম্বলিক হ্যান্ডেল পেতে ব্যবহৃত হয় যা ইনপুটের গণনার প্রতিনিধিত্ব করে।
সর্বজনীন স্ট্যাটিক সেগমেন্টমিন <T> তৈরি করুন ( স্কোপ স্কোপ, অপারেন্ড <T> ডেটা, অপারেন্ড <? প্রসারিত TNumber > segmentIds)
একটি নতুন SegmentMean অপারেশন মোড়ানো একটি ক্লাস তৈরি করার কারখানা পদ্ধতি।
পরামিতি
সুযোগ | বর্তমান সুযোগ |
---|---|
সেগমেন্ট আইডি | একটি 1-ডি টেনসর যার আকার `ডেটা` এর প্রথম মাত্রার আকারের সমান। মানগুলি সাজানো উচিত এবং পুনরাবৃত্তি করা যেতে পারে। |
রিটার্নস
- সেগমেন্টমিনের একটি নতুন উদাহরণ
সর্বজনীন আউটপুট <T> আউটপুট ()
ডেটার মতো একই আকৃতি আছে, মাত্র 0 বাদে যার আকার `k` আছে, সেগমেন্টের সংখ্যা।