Sparse-matrix-multiplies two CSR matrices `a` and `b`.
Performs a matrix multiplication of a sparse matrix `a` with a sparse matrix `b`; returns a sparse matrix `a * b`, unless either `a` or `b` is transposed or adjointed.
Each matrix may be transposed or adjointed (conjugated and transposed) according to the Boolean parameters `transpose_a`, `adjoint_a`, `transpose_b` and `adjoint_b`. At most one of `transpose_a` or `adjoint_a` may be True. Similarly, at most one of `transpose_b` or `adjoint_b` may be True.
The inputs must have compatible shapes. That is, the inner dimension of `a` must be equal to the outer dimension of `b`. This requirement is adjusted according to whether either `a` or `b` is transposed or adjointed.
The `type` parameter denotes the type of the matrix elements. Both `a` and `b` must have the same type. The supported types are: `float32`, `float64`, `complex64` and `complex128`.
Both `a` and `b` must have the same rank. Broadcasting is not supported. If they have rank 3, each batch of 2D CSRSparseMatrices within `a` and `b` must have the same dense shape.
The sparse matrix product may have numeric (non-structural) zeros. TODO(anudhyan): Consider adding a boolean attribute to control whether to prune zeros.
Usage example:
from tensorflow.python.ops.linalg.sparse import sparse_csr_matrix_ops
a_indices = np.array([[0, 0], [2, 3], [2, 4], [3, 0]])
a_values = np.array([1.0, 5.0, -1.0, -2.0], np.float32)
a_dense_shape = [4, 5]
b_indices = np.array([[0, 0], [3, 0], [3, 1]])
b_values = np.array([2.0, 7.0, 8.0], np.float32)
b_dense_shape = [5, 3]
with tf.Session() as sess:
# Define (COO format) Sparse Tensors over Numpy arrays
a_st = tf.sparse.SparseTensor(a_indices, a_values, a_dense_shape)
b_st = tf.sparse.SparseTensor(b_indices, b_values, b_dense_shape)
# Convert SparseTensors to CSR SparseMatrix
a_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
a_st.indices, a_st.values, a_st.dense_shape)
b_sm = sparse_csr_matrix_ops.sparse_tensor_to_csr_sparse_matrix(
b_st.indices, b_st.values, b_st.dense_shape)
# Compute the CSR SparseMatrix matrix multiplication
c_sm = sparse_csr_matrix_ops.sparse_matrix_sparse_mat_mul(
a=a_sm, b=b_sm, type=tf.float32)
# Convert the CSR SparseMatrix product to a dense Tensor
c_sm_dense = sparse_csr_matrix_ops.csr_sparse_matrix_to_dense(
c_sm, tf.float32)
# Evaluate the dense Tensor value
c_sm_dense_value = sess.run(c_sm_dense)
`c_sm_dense_value` stores the dense matrix product:
[[ 2. 0. 0.]
[ 0. 0. 0.]
[ 35. 40. 0.]
[ -4. 0. 0.]]
a: A `CSRSparseMatrix`.
b: A `CSRSparseMatrix` with the same type and rank as `a`.
type: The type of both `a` and `b`.
transpose_a: If True, `a` transposed before multiplication.
transpose_b: If True, `b` transposed before multiplication.
adjoint_a: If True, `a` adjointed before multiplication.
adjoint_b: If True, `b` adjointed before multiplication.
Nested Classes
class | SparseMatrixSparseMatMul.Options | Optional attributes for SparseMatrixSparseMatMul
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
static SparseMatrixSparseMatMul.Options |
adjointA(Boolean adjointA)
|
static SparseMatrixSparseMatMul.Options |
adjointB(Boolean adjointB)
|
Output<TType> |
asOutput()
Returns the symbolic handle of the tensor.
|
Output<?> |
c()
A CSRSparseMatrix.
|
static <T extends TType> SparseMatrixSparseMatMul |
create(Scope scope, Operand<?> a, Operand<?> b, Class<T> type, Options... options)
Factory method to create a class wrapping a new SparseMatrixSparseMatMul operation.
|
static SparseMatrixSparseMatMul.Options |
transposeA(Boolean transposeA)
|
static SparseMatrixSparseMatMul.Options |
transposeB(Boolean transposeB)
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Public Methods
public static SparseMatrixSparseMatMul.Options adjointA (Boolean adjointA)
Parameters
adjointA | Indicates whether `a` should be conjugate-transposed. |
---|
public static SparseMatrixSparseMatMul.Options adjointB (Boolean adjointB)
Parameters
adjointB | Indicates whether `b` should be conjugate-transposed. |
---|
public Output<TType> asOutput ()
Returns the symbolic handle of the tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static SparseMatrixSparseMatMul create (Scope scope, Operand<?> a, Operand<?> b, Class<T> type, Options... options)
Factory method to create a class wrapping a new SparseMatrixSparseMatMul operation.
Parameters
scope | current scope |
---|---|
a | A CSRSparseMatrix. |
b | A CSRSparseMatrix. |
options | carries optional attributes values |
Returns
- a new instance of SparseMatrixSparseMatMul
public static SparseMatrixSparseMatMul.Options transposeA (Boolean transposeA)
Parameters
transposeA | Indicates whether `a` should be transposed. |
---|
public static SparseMatrixSparseMatMul.Options transposeB (Boolean transposeB)
Parameters
transposeB | Indicates whether `b` should be transposed. |
---|