Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion.
The inputs must be two-dimensional matrices and 1D bias vector. And the inner dimension of `a` (after being transposed if `transpose_a` is non-zero) must match the outer dimension of `b` (after being transposed if `transposed_b` is non-zero). Then do broadcast add operation with bias values on the matrix multiplication result. The bias size must match inner dimension of `b`. Then do relu activation to get non-negative result.
Nested Classes
class | QuantizedMatMulWithBiasAndRelu.Options | Optional attributes for QuantizedMatMulWithBiasAndRelu
|
Constants
String | OP_NAME | The name of this op, as known by TensorFlow core engine |
Public Methods
static <V extends TType> QuantizedMatMulWithBiasAndRelu<V> |
create(Scope scope, Operand<? extends TType> a, Operand<? extends TType> b, Operand<TFloat32> bias, Operand<TFloat32> minA, Operand<TFloat32> maxA, Operand<TFloat32> minB, Operand<TFloat32> maxB, Class<V> Toutput, Options... options)
Factory method to create a class wrapping a new QuantizedMatMulWithBiasAndRelu operation.
|
static QuantizedMatMulWithBiasAndRelu.Options |
inputQuantMode(String inputQuantMode)
|
Output<TFloat32> |
maxOut()
The float value that the highest quantized output value represents.
|
Output<TFloat32> |
minOut()
The float value that the lowest quantized output value represents.
|
Output<V> |
out()
|
static QuantizedMatMulWithBiasAndRelu.Options |
transposeA(Boolean transposeA)
|
static QuantizedMatMulWithBiasAndRelu.Options |
transposeB(Boolean transposeB)
|
Inherited Methods
Constants
public static final String OP_NAME
The name of this op, as known by TensorFlow core engine
Public Methods
public static QuantizedMatMulWithBiasAndRelu<V> create (Scope scope, Operand<? extends TType> a, Operand<? extends TType> b, Operand<TFloat32> bias, Operand<TFloat32> minA, Operand<TFloat32> maxA, Operand<TFloat32> minB, Operand<TFloat32> maxB, Class<V> Toutput, Options... options)
Factory method to create a class wrapping a new QuantizedMatMulWithBiasAndRelu operation.
Parameters
scope | current scope |
---|---|
a | A matrix to be multiplied. Must be a two-dimensional tensor of type `quint8`. |
b | A matrix to be multiplied and must be a two-dimensional tensor of type `qint8`. |
bias | A 1D bias tensor with size matching with inner dimension of `b` (after being transposed if `transposed_b` is non-zero). |
minA | The float value that the lowest quantized `a` value represents. |
maxA | The float value that the highest quantized `a` value represents. |
minB | The float value that the lowest quantized `b` value represents. |
maxB | The float value that the highest quantized `b` value represents. |
options | carries optional attributes values |
Returns
- a new instance of QuantizedMatMulWithBiasAndRelu
public static QuantizedMatMulWithBiasAndRelu.Options inputQuantMode (String inputQuantMode)
Parameters
inputQuantMode | Input data quantization mode. Either MIN_FIRST(default) or SCALED. |
---|
public Output<TFloat32> maxOut ()
The float value that the highest quantized output value represents.
public Output<TFloat32> minOut ()
The float value that the lowest quantized output value represents.
public static QuantizedMatMulWithBiasAndRelu.Options transposeA (Boolean transposeA)
Parameters
transposeA | If true, `a` is transposed before multiplication. |
---|
public static QuantizedMatMulWithBiasAndRelu.Options transposeB (Boolean transposeB)
Parameters
transposeB | If true, `b` is transposed before multiplication. |
---|