MatrixSetDiag

MatrixSetDiag classe final pública

Retorna um tensor de matriz em lote com novos valores diagonais em lote.

Dada `entrada` e` diagonal`, esta operação retorna um tensor com a mesma forma e valores de `entrada`, exceto para as diagonais especificadas das matrizes mais internas. Eles serão substituídos pelos valores em `diagonal`.

`entrada` tem dimensões` r + 1` `[I, J, ..., L, M, N]`. Quando `k` é escalar ou` k [0] == k [1] `,` diagonal` tem dimensões `r`` [I, J, ..., L, max_diag_len] `. Caso contrário, tem dimensões `r + 1`` [I, J, ..., L, num_diags, max_diag_len] `. `num_diags` é o número de diagonais,` num_diags = k [1] - k [0] + 1`. `max_diag_len` é a diagonal mais longa no intervalo` [k [0], k [1]] `,` max_diag_len = min (M + min (k [1], 0), N + min (-k [0] , 0)) `

A saída é um tensor de classificação `k + 1` com dimensões` [I, J, ..., L, M, N] `. Se `k` é escalar ou` K [0] == k [1] `:

output[i, j, ..., l, m, n]
   = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
     input[i, j, ..., l, m, n]              ; otherwise
 
Caso contrário,
output[i, j, ..., l, m, n]
   = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
     input[i, j, ..., l, m, n]                         ; otherwise
 
onde` d = n - m`, `diag_index = k [1] - d`, e` index_in_diag = n - max (d, 0) + deslocamento`.

`offset` é zero, exceto quando o alinhamento da diagonal é para a direita.

offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT
                                            and `d >= 0`) or
                                          (`align` in {LEFT_RIGHT, RIGHT_RIGHT}
                                            and `d <= 0`)
          0                          ; otherwise
 }
onde `diag_len (d) = min (cols - max (d, 0), linhas + mínimo (d, 0)) '.

Por exemplo:

# The main diagonal.
 input = np.array([[[7, 7, 7, 7],              # Input shape: (2, 3, 4)
                    [7, 7, 7, 7],
                    [7, 7, 7, 7]],
                   [[7, 7, 7, 7],
                    [7, 7, 7, 7],
                    [7, 7, 7, 7]]])
 diagonal = np.array([[1, 2, 3],               # Diagonal shape: (2, 3)
                      [4, 5, 6]])
 tf.matrix_set_diag(input, diagonal)
   ==> [[[1, 7, 7, 7],  # Output shape: (2, 3, 4)
         [7, 2, 7, 7],
         [7, 7, 3, 7]],
        [[4, 7, 7, 7],
         [7, 5, 7, 7],
         [7, 7, 6, 7]]]
 
 # A superdiagonal (per batch).
 tf.matrix_set_diag(input, diagonal, k = 1)
   ==> [[[7, 1, 7, 7],  # Output shape: (2, 3, 4)
         [7, 7, 2, 7],
         [7, 7, 7, 3]],
        [[7, 4, 7, 7],
         [7, 7, 5, 7],
         [7, 7, 7, 6]]]
 
 # A band of diagonals.
 diagonals = np.array([[[0, 9, 1],  # Diagonal shape: (2, 4, 3)
                        [6, 5, 8],
                        [1, 2, 3],
                        [4, 5, 0]],
                       [[0, 1, 2],
                        [5, 6, 4],
                        [6, 1, 2],
                        [3, 4, 0]]])
 tf.matrix_set_diag(input, diagonals, k = (-1, 2))
   ==> [[[1, 6, 9, 7],  # Output shape: (2, 3, 4)
         [4, 2, 5, 1],
         [7, 5, 3, 8]],
        [[6, 5, 1, 7],
         [3, 1, 6, 2],
         [7, 4, 2, 4]]]
 
 # LEFT_RIGHT alignment.
 diagonals = np.array([[[9, 1, 0],  # Diagonal shape: (2, 4, 3)
                        [6, 5, 8],
                        [1, 2, 3],
                        [0, 4, 5]],
                       [[1, 2, 0],
                        [5, 6, 4],
                        [6, 1, 2],
                        [0, 3, 4]]])
 tf.matrix_set_diag(input, diagonals, k = (-1, 2), align="LEFT_RIGHT")
   ==> [[[1, 6, 9, 7],  # Output shape: (2, 3, 4)
         [4, 2, 5, 1],
         [7, 5, 3, 8]],
        [[6, 5, 1, 7],
         [3, 1, 6, 2],
         [7, 4, 2, 4]]]
 
 

Classes aninhadas

classe MatrixSetDiag.Options Atributos opcionais para MatrixSetDiag

Constantes

Corda OP_NAME O nome desta operação, conforme conhecido pelo motor principal TensorFlow

Métodos Públicos

estáticos MatrixSetDiag.Options
align (align String)
Output <T>
asOutput ()
Retorna o identificador simbólico do tensor.
estática <T estende TType > MatrixSetDiag <T>
criar ( Scope escopo, Operando <T> entrada, Operando <T> diagonal, Operando < TInt32 > k, Options ... Opções)
Método de fábrica para criar uma classe envolvendo uma nova operação MatrixSetDiag.
Output <T>
saída ()
Rank `r + 1`, com` output.shape = input.shape`.

Métodos herdados

Constantes

nome_op final String public static

O nome desta operação, conforme conhecido pelo motor principal TensorFlow

Valor constante: "MatrixSetDiagV3"

Métodos Públicos

public static MatrixSetDiag.Options align (alinhar String)

Parâmetros
alinhar Algumas diagonais são mais curtas do que `max_diag_len` e precisam ser preenchidas. `align` é uma string que especifica como as superdiagonais e subdiagonais devem ser alinhadas, respectivamente. Existem quatro alinhamentos possíveis: "RIGHT_LEFT" (padrão), "LEFT_RIGHT", "LEFT_LEFT" e "RIGHT_RIGHT". "RIGHT_LEFT" alinha superdiagonais à direita (preenchimento da linha com a esquerda) e subdiagonais à esquerda (preenchimento da linha com a direita). É o formato de embalagem que o LAPACK usa. cuSPARSE usa "LEFT_RIGHT", que é o alinhamento oposto.

pública Output <T> asOutput ()

Retorna o identificador simbólico do tensor.

As entradas para as operações do TensorFlow são saídas de outra operação do TensorFlow. Este método é usado para obter um identificador simbólico que representa o cálculo da entrada.

public static MatrixSetDiag <T> create ( Scope escopo, Operando <T> entrada, Operando <T> diagonal, Operando < TInt32 > k, Options ... Opções)

Método de fábrica para criar uma classe envolvendo uma nova operação MatrixSetDiag.

Parâmetros
alcance escopo atual
entrada Rank `r + 1`, onde` r> = 1`.
diagonal Classifique `r` quando` k` é um número inteiro ou `k [0] == k [1]`. Caso contrário, tem classificação `r + 1`. `k> = 1`.
k Desvio (s) diagonal (es). O valor positivo significa superdiagonal, 0 se refere à diagonal principal e o valor negativo significa subdiagonais. `k` pode ser um único inteiro (para uma única diagonal) ou um par de inteiros especificando as extremidades inferior e superior de uma banda de matriz. `k [0]` não deve ser maior que `k [1]`.
opções carrega valores de atributos opcionais
Devoluções
  • uma nova instância de MatrixSetDiag

pública Output <T> de saída ()

Rank `r + 1`, com` output.shape = input.shape`.