یک تانسور مورب دستهای را با مقادیر مورب دستهای داده شده برمیگرداند.
تانسوری را با محتویات «مورب» به صورت قطرهای «k[0]»-th به «k[1]»-امین یک ماتریس برمیگرداند، و هر چیز دیگری با «padding» پر شده است. 'num_rows' و 'num_cols' بعد داخلی ترین ماتریس خروجی را مشخص می کنند. اگر هر دو مشخص نشده باشند، op داخلی ترین ماتریس را مربع فرض می کند و اندازه آن را از «k» و درونی ترین بعد «مورب» استنباط می کند. اگر فقط یکی از آنها مشخص شده باشد، op فرض می کند که مقدار نامشخص بر اساس معیارهای دیگر کوچکترین مقدار ممکن است.
اجازه دهید «مورب» دارای ابعاد «r» باشد «[I، J، ...، L، M، N]». تانسور خروجی دارای رتبه «r+1» با شکل «[I، J، ...، L، M، تعداد_ردیفها، num_cols]» است که فقط یک قطر داده میشود (k» یک عدد صحیح است یا «k[0] == k[1]`). در غیر این صورت، دارای رتبه «r» با شکل «[I، J، ...، L، num_rows، num_cols]» است.
دومین بعد درونی «مورب» معنایی دوگانه دارد. وقتی «k» اسکالر یا «k[0] == k[1]» است، «M» بخشی از اندازه دسته [I، J، ...، M] است و تانسور خروجی:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
"offset" صفر است مگر زمانی که تراز مورب به سمت راست باشد.
offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT
and `d >= 0`) or
(`align` in {LEFT_RIGHT, RIGHT_RIGHT}
and `d <= 0`)
0 ; otherwise
}
به عنوان مثال:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A tridiagonal band (per batch).
diagonals = np.array([[[0, 8, 9], # Input shape: (2, 2, 3)
[1, 2, 3],
[4, 5, 0]],
[[0, 2, 3],
[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 1))
==> [[[1, 8, 0], # Output shape: (2, 3, 3)
[4, 2, 9],
[0, 5, 3]],
[[6, 2, 0],
[9, 7, 3],
[0, 1, 9]]]
# LEFT_RIGHT alignment.
diagonals = np.array([[[8, 9, 0], # Input shape: (2, 2, 3)
[1, 2, 3],
[0, 4, 5]],
[[2, 3, 0],
[6, 7, 9],
[0, 9, 1]]])
tf.matrix_diag(diagonals, k = (-1, 1), align="LEFT_RIGHT")
==> [[[1, 8, 0], # Output shape: (2, 3, 3)
[4, 2, 9],
[0, 5, 3]],
[[6, 2, 0],
[9, 7, 3],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
کلاس های تو در تو
کلاس | MatrixDiagV3.Options | ویژگی های اختیاری برای MatrixDiagV3 |
ثابت ها
رشته | OP_NAME | نام این عملیات، همانطور که توسط موتور هسته TensorFlow شناخته می شود |
روش های عمومی
استاتیک MatrixDiagV3.Options | تراز کردن (تراز رشته) |
خروجی <T> | asOutput () دسته نمادین تانسور را برمی گرداند. |
static <T TType > MatrixDiagV3 <T> را گسترش می دهد | |
خروجی <T> | خروجی () هنگامی که «k» یک عدد صحیح است یا «k[0] == k[1]» دارای رتبه «r+1» است، در غیر این صورت «r» را رتبه بندی کنید. |
روش های ارثی
ثابت ها
رشته نهایی ثابت عمومی OP_NAME
نام این عملیات، همانطور که توسط موتور هسته TensorFlow شناخته می شود
روش های عمومی
عمومی استاتیک MatrixDiagV3. Options align (String align)
پارامترها
تراز کردن | برخی از موربها کوتاهتر از «max_diag_len» هستند و باید روی آنها قرار داده شوند. «align» رشتهای است که مشخص میکند به ترتیب چگونه ابرموربها و زیر قطرها باید تراز شوند. چهار تراز احتمالی وجود دارد: «RIGHT_LEFT» (پیشفرض)، «LEFT_RIGHT»، «LEFT_LEFT» و «RIGHT_RIGHT». "RIGHT_LEFT" ابرمورب ها را به سمت راست تراز می کند (ردیف را به سمت چپ قرار می دهد) و قطرهای فرعی را در سمت چپ (راست روی ردیف قرار می دهد). این فرمت بسته بندی است که LAPACK از آن استفاده می کند. cuSPARSE از "LEFT_RIGHT" استفاده می کند که تراز مخالف است. |
---|
خروجی عمومی <T> asOutput ()
دسته نمادین تانسور را برمی گرداند.
ورودی های عملیات TensorFlow خروجی های عملیات تنسورفلو دیگر هستند. این روش برای به دست آوردن یک دسته نمادین که نشان دهنده محاسبه ورودی است استفاده می شود.
استاتیک عمومی MatrixDiagV3 <T> ایجاد ( دامنه دامنه ، عملوند <T> مورب، عملوند < TINT32 > k، عملوند < TINT32 > numRows، عملوند < TINT32 > numCols، عملوند <T> paddingValue، گزینهها... گزینهها)
روش کارخانه برای ایجاد کلاسی که یک عملیات جدید MatrixDiagV3 را بسته بندی می کند.
پارامترها
دامنه | محدوده فعلی |
---|---|
مورب | رتبه `r`، جایی که `r >= 1` |
ک | افست (های) مورب. مقدار مثبت به معنای ابر قطری، 0 به قطر اصلی و مقدار منفی به معنای قطرهای فرعی است. `k` می تواند یک عدد صحیح منفرد (برای یک مورب) یا یک جفت اعداد صحیح باشد که انتهای پایین و بالای یک باند ماتریس را مشخص می کند. «k[0]» نباید بزرگتر از «k[1]» باشد. |
numRows | تعداد ردیف های ماتریس خروجی. اگر ارائه نشده باشد، عملیات ماتریس خروجی را یک ماتریس مربع فرض میکند و اندازه ماتریس را از k و درونیترین بعد «مورب» استنتاج میکند. |
numCols | تعداد ستون های ماتریس خروجی اگر ارائه نشده باشد، عملیات ماتریس خروجی را یک ماتریس مربع فرض میکند و اندازه ماتریس را از k و درونیترین بعد «مورب» استنتاج میکند. |
paddingValue | عددی که باید ناحیه خارج از نوار مورب مشخص شده را با آن پر کنید. پیش فرض 0 است. |
گزینه ها | مقادیر ویژگی های اختیاری را حمل می کند |
برمی گرداند
- یک نمونه جدید از MatrixDiagV3
خروجی عمومی <T> خروجی ()
هنگامی که «k» یک عدد صحیح است یا «k[0] == k[1]» دارای رتبه «r+1» است، در غیر این صورت «r» را رتبه بندی کنید.