Retorna um tensor diagonal em lote com os valores diagonais em lote fornecidos.
Retorna um tensor com o conteúdo em `diagonal` como` k [0] `-ésima a` k [1] `-ésima diagonais de uma matriz, com todo o resto preenchido com` preenchimento`. `num_rows` e` num_cols` especificam a dimensão da matriz mais interna da saída. Se ambos não forem especificados, o op assume que a matriz mais interna é quadrada e infere seu tamanho de `k` e a dimensão mais interna de` diagonal`. Se apenas um deles for especificado, o op assume que o valor não especificado é o menor possível com base em outros critérios.
Deixe `diagonal` ter dimensões` r` `[I, J, ..., L, M, N]`. O tensor de saída tem classificação `r + 1` com a forma` [I, J, ..., L, M, núm_rows, núm_coletas] `quando apenas uma diagonal é fornecida (` k` é um inteiro ou `k [0] == k [1] `). Caso contrário, ele tem classificação `r` com forma` [I, J, ..., L, núm_rows, núm_coletas] `.
A segunda dimensão mais interna de `diagonal` tem duplo significado. Quando `k` é escalar ou` K [0] == k [1] `,` M` faz parte do tamanho do lote [i, j, ..., M], e o tensor de saída é:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
Caso contrário, `M` é tratado como o número de diagonais para a matriz no mesmo lote (` M = k [1] -k [0] + 1`), e o tensor de saída é: output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
onde `d = n - m`, `diag_index = k [1] - d`, e` index_in_diag = n - max (d, 0) `.Por exemplo:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
Constantes
Fragmento | OP_NAME | O nome desta operação, conforme conhecido pelo motor principal TensorFlow |
Métodos Públicos
Output <T> | asOutput () Retorna o identificador simbólico do tensor. |
estática <T estende TType > MatrixDiag <T> | |
Output <T> | saída () Tem classificação `r + 1` quando` k` é um inteiro ou `k [0] == k [1]`, classificação `r` caso contrário. |
Métodos herdados
Constantes
nome_op final String public static
O nome desta operação, conforme conhecido pelo motor principal TensorFlow
Métodos Públicos
pública Output <T> asOutput ()
Retorna o identificador simbólico do tensor.
As entradas para as operações do TensorFlow são saídas de outra operação do TensorFlow. Este método é usado para obter um identificador simbólico que representa o cálculo da entrada.
public static MatrixDiag <T> create ( Scope escopo, Operando <T> diagonal, Operando < TInt32 > k, operando < TInt32 > numRows, Operando < TInt32 > NúmColunas, Operando <T> paddingValue)
Método de fábrica para criar uma classe envolvendo uma nova operação MatrixDiag.
Parâmetros
alcance | escopo atual |
---|---|
diagonal | Rank `r`, onde` r> = 1` |
k | Desvio (s) diagonal (es). O valor positivo significa superdiagonal, 0 se refere à diagonal principal e o valor negativo significa subdiagonais. `k` pode ser um único inteiro (para uma única diagonal) ou um par de inteiros especificando as extremidades inferior e superior de uma banda de matriz. `k [0]` não deve ser maior que `k [1]`. |
numRows | O número de linhas da matriz de saída. Se não for fornecido, o op assume que a matriz de saída é uma matriz quadrada e infere o tamanho da matriz de ke a dimensão mais interna de `diagonal`. |
numCols | O número de colunas da matriz de saída. Se não for fornecido, o op assume que a matriz de saída é uma matriz quadrada e infere o tamanho da matriz de ke a dimensão mais interna de `diagonal`. |
paddingValue | O número para preencher a área fora da faixa diagonal especificada. O padrão é 0. |
Devoluções
- uma nova instância de MatrixDiag
pública Output <T> de saída ()
Tem classificação `r + 1` quando` k` é um inteiro ou `k [0] == k [1]`, classificação `r` caso contrário.