מחזירה טנזור אלכסוני אצווה עם ערכי אלכסון אצווה נתונים.
מחזירה טנזור עם התוכן ב-`אלכסון` כאלכסוני `k[0]`-th ל-`k[1]`-th של מטריצה, כאשר כל השאר מרופדים ב-`padding`. `num_rows` ו-`num_cols` מציינים את הממד של המטריצה הפנימית ביותר של הפלט. אם שניהם לא מצוינים, האופ מניח שהמטריקס הפנימי ביותר הוא מרובע ומסיק את גודלה מ-'k' והממד הפנימי ביותר של 'אלכסון'. אם רק אחד מהם צוין, ה-op מניח שהערך הלא מוגדר הוא הקטן ביותר האפשרי בהתבסס על קריטריונים אחרים.
תן ל-`אלכסון` להיות ממדי `r` `[I, J, ..., L, M, N]`. לטנזור הפלט יש דרגה 'r+1' עם הצורה '[I, J, ..., L, M, num_rows, num_cols]' כאשר ניתן רק אלכסון אחד ('k' הוא מספר שלם או 'k[0] == k[1]`). אחרת, יש לו דרגה 'r' עם הצורה '[I, J, ..., L, num_rows, num_cols]'.
למימד השני הפנימי ביותר של `אלכסון` יש משמעות כפולה. כאשר `k` הוא סקלארי או `k[0] == k[1]`, `M` הוא חלק מגודל האצווה [I, J, ..., M], וטנסור הפלט הוא:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
לְדוּגמָה:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
קבועים
חוּט | OP_NAME | השם של המבצע הזה, כפי שידוע על ידי מנוע הליבה של TensorFlow |
שיטות ציבוריות
פלט <T> | asOutput () מחזירה את הידית הסמלית של הטנזור. |
סטטי <T מרחיב את TType > MatrixDiag <T> | |
פלט <T> | פלט () יש דרגה `r+1` כאשר `k` הוא מספר שלם או `k[0] == k[1]`, דרגה `r` אחרת. |
שיטות בירושה
קבועים
מחרוזת סופית סטטית ציבורית OP_NAME
השם של המבצע הזה, כפי שידוע על ידי מנוע הליבה של TensorFlow
שיטות ציבוריות
פלט ציבורי <T> asOutput ()
מחזירה את הידית הסמלית של הטנזור.
כניסות לפעולות TensorFlow הן יציאות של פעולת TensorFlow אחרת. שיטה זו משמשת להשגת ידית סמלית המייצגת את חישוב הקלט.
ציבורי סטטי MatrixDiag <T> create ( scope scope, Operand <T> diagonal, Operand < TInt32 > k, Operand < TInt32 > numRows, Operand < TInt32 > numCols, Operand <T> paddingValue)
שיטת מפעל ליצירת מחלקה העוטפת פעולת MatrixDiag חדשה.
פרמטרים
תְחוּם | ההיקף הנוכחי |
---|---|
אֲלַכסוֹנִי | דירוג `r`, כאשר `r >= 1` |
ק | היסט אלכסוני(ים). ערך חיובי פירושו על-אלכסון, 0 מתייחס לאלכסון הראשי, וערך שלילי פירושו תת-אלכסונים. `k` יכול להיות מספר שלם בודד (עבור אלכסון בודד) או זוג מספרים שלמים המציינים את הקצוות הנמוכים והגבוהים של פס מטריצה. 'k[0]' לא יכול להיות גדול מ-'k[1]'. |
numRows | מספר השורות של מטריצת הפלט. אם זה לא מסופק, ה-op מניח שמטריצת הפלט היא מטריצה מרובעת ומסיק את גודל המטריצה מ-k ומהמימד הפנימי ביותר של 'אלכסון'. |
numCols | מספר העמודות של מטריצת הפלט. אם זה לא מסופק, ה-op מניח שמטריצת הפלט היא מטריצה מרובעת ומסיק את גודל המטריצה מ-k ומהמימד הפנימי ביותר של 'אלכסון'. |
paddingValue | המספר שיש למלא איתו את השטח שמחוץ לפס האלכסוני שצוין. ברירת המחדל היא 0. |
מחזיר
- מופע חדש של MatrixDiag