MatrixDiag

public final class MatrixDiag

Returns a batched diagonal tensor with given batched diagonal values.

Returns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th diagonals of a matrix, with everything else padded with `padding`. `num_rows` and `num_cols` specify the dimension of the innermost matrix of the output. If both are not specified, the op assumes the innermost matrix is square and infers its size from `k` and the innermost dimension of `diagonal`. If only one of them is specified, the op assumes the unspecified value is the smallest possible based on other criteria.

Let `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor has rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only one diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has rank `r` with shape `[I, J, ..., L, num_rows, num_cols]`.

The second innermost dimension of `diagonal` has double meaning. When `k` is scalar or `k[0] == k[1]`, `M` is part of the batch size [I, J, ..., M], and the output tensor is:

output[i, j, ..., l, m, n]
   = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
     padding_value                             ; otherwise
 
Otherwise, `M` is treated as the number of diagonals for the matrix in the same batch (`M = k[1]-k[0]+1`), and the output tensor is:
output[i, j, ..., l, m, n]
   = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
     padding_value                                     ; otherwise
 
where `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0)`.

For example:

# The main diagonal.
 diagonal = np.array([[1, 2, 3, 4],            # Input shape: (2, 4)
                      [5, 6, 7, 8]])
 tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0],  # Output shape: (2, 4, 4)
                                [0, 2, 0, 0],
                                [0, 0, 3, 0],
                                [0, 0, 0, 4]],
                               [[5, 0, 0, 0],
                                [0, 6, 0, 0],
                                [0, 0, 7, 0],
                                [0, 0, 0, 8]]]
 
 # A superdiagonal (per batch).
 diagonal = np.array([[1, 2, 3],  # Input shape: (2, 3)
                      [4, 5, 6]])
 tf.matrix_diag(diagonal, k = 1)
   ==> [[[0, 1, 0, 0],  # Output shape: (2, 4, 4)
         [0, 0, 2, 0],
         [0, 0, 0, 3],
         [0, 0, 0, 0]],
        [[0, 4, 0, 0],
         [0, 0, 5, 0],
         [0, 0, 0, 6],
         [0, 0, 0, 0]]]
 
 # A band of diagonals.
 diagonals = np.array([[[1, 2, 3],  # Input shape: (2, 2, 3)
                        [4, 5, 0]],
                       [[6, 7, 9],
                        [9, 1, 0]]])
 tf.matrix_diag(diagonals, k = (-1, 0))
   ==> [[[1, 0, 0],  # Output shape: (2, 3, 3)
         [4, 2, 0],
         [0, 5, 3]],
        [[6, 0, 0],
         [9, 7, 0],
         [0, 1, 9]]]
 
 # Rectangular matrix.
 diagonal = np.array([1, 2])  # Input shape: (2)
 tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
   ==> [[0, 0, 0, 0],  # Output shape: (3, 4)
        [1, 0, 0, 0],
        [0, 2, 0, 0]]
 
 # Rectangular matrix with inferred num_cols and padding_value = 9.
 tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
   ==> [[9, 9],  # Output shape: (3, 2)
        [1, 9],
        [9, 2]]
 

Constants

String OP_NAME The name of this op, as known by TensorFlow core engine

Public Methods

Output<T>
asOutput()
Returns the symbolic handle of the tensor.
static <T extends TType> MatrixDiag<T>
create(Scope scope, Operand<T> diagonal, Operand<TInt32> k, Operand<TInt32> numRows, Operand<TInt32> numCols, Operand<T> paddingValue)
Factory method to create a class wrapping a new MatrixDiag operation.
Output<T>
output()
Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise.

Inherited Methods

Constants

public static final String OP_NAME

The name of this op, as known by TensorFlow core engine

Constant Value: "MatrixDiagV2"

Public Methods

public Output<T> asOutput ()

Returns the symbolic handle of the tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static MatrixDiag<T> create (Scope scope, Operand<T> diagonal, Operand<TInt32> k, Operand<TInt32> numRows, Operand<TInt32> numCols, Operand<T> paddingValue)

Factory method to create a class wrapping a new MatrixDiag operation.

Parameters
scope current scope
diagonal Rank `r`, where `r >= 1`
k Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.
numRows The number of rows of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of `diagonal`.
numCols The number of columns of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of `diagonal`.
paddingValue The number to fill the area outside the specified diagonal band with. Default is 0.
Returns
  • a new instance of MatrixDiag

public Output<T> output ()

Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise.