공개 최종 클래스 반전
지원되는 유형의 각 비트를 반전(플립)합니다. 예를 들어 'uint8'을 입력하면 값 01010101은 10101010이 됩니다.
지원되는 유형의 각 비트를 뒤집습니다. 예를 들어 'int8'(10진수 2) 유형의 이진수 00000010은 (10진수 -3) 이진수 11111101이 됩니다. 이 작업은 텐서 인수 'x'의 각 요소에 대해 수행됩니다.
예:
import tensorflow as tf
from tensorflow.python.ops import bitwise_ops
# flip 2 (00000010) to -3 (11111101)
tf.assert_equal(-3, bitwise_ops.invert(2))
dtype_list = [dtypes.int8, dtypes.int16, dtypes.int32, dtypes.int64,
dtypes.uint8, dtypes.uint16, dtypes.uint32, dtypes.uint64]
inputs = [0, 5, 3, 14]
for dtype in dtype_list:
# Because of issues with negative numbers, let's test this indirectly.
# 1. invert(a) and a = 0
# 2. invert(a) or a = invert(0)
input_tensor = tf.constant([0, 5, 3, 14], dtype=dtype)
not_a_and_a, not_a_or_a, not_0 = [bitwise_ops.bitwise_and(
input_tensor, bitwise_ops.invert(input_tensor)),
bitwise_ops.bitwise_or(
input_tensor, bitwise_ops.invert(input_tensor)),
bitwise_ops.invert(
tf.constant(0, dtype=dtype))]
expected = tf.constant([0, 0, 0, 0], dtype=tf.float32)
tf.assert_equal(tf.cast(not_a_and_a, tf.float32), expected)
expected = tf.cast([not_0] * 4, tf.float32)
tf.assert_equal(tf.cast(not_a_or_a, tf.float32), expected)
# For unsigned dtypes let's also check the result directly.
if dtype.is_unsigned:
inverted = bitwise_ops.invert(input_tensor)
expected = tf.constant([dtype.max - x for x in inputs], dtype=tf.float32)
tf.assert_equal(tf.cast(inverted, tf.float32), tf.cast(expected, tf.float32))
상수
끈 | OP_NAME | TensorFlow 코어 엔진에서 알려진 이 작업의 이름 |
공개 방법
출력 <T> | 출력 () 텐서의 기호 핸들을 반환합니다. |
static <T는 Tnumber를 확장합니다. > 반전 <T> | |
출력 <T> | 와이 () |
상속된 메서드
상수
공개 정적 최종 문자열 OP_NAME
TensorFlow 코어 엔진에서 알려진 이 작업의 이름
상수 값: "반전"
공개 방법
공개 출력 <T> asOutput ()
텐서의 기호 핸들을 반환합니다.
TensorFlow 작업에 대한 입력은 다른 TensorFlow 작업의 출력입니다. 이 메서드는 입력 계산을 나타내는 기호 핸들을 얻는 데 사용됩니다.
public static Invert <T> create ( 범위 범위, 피연산자 <T> x)
새로운 반전 작업을 래핑하는 클래스를 생성하는 팩토리 메서드입니다.
매개변수
범위 | 현재 범위 |
---|
보고
- Invert의 새로운 인스턴스