Abort
|
Raise a exception to abort the process when called.
|
Abs
<T extends
TNumber
>
|
Computes the absolute value of a tensor.
|
AccumulateN
<T extends
TType
>
|
Returns the element-wise sum of a list of tensors.
|
AccumulatorApplyGradient
|
Applies a gradient to a given accumulator.
|
AccumulatorNumAccumulated
|
Returns the number of gradients aggregated in the given accumulators.
|
AccumulatorSetGlobalStep
|
Updates the accumulator with a new value for global_step.
|
AccumulatorTakeGradient
<T extends
TType
>
|
Extracts the average gradient in the given ConditionalAccumulator.
|
Acos
<T extends
TType
>
|
Computes acos of x element-wise.
|
Acosh
<T extends
TType
>
|
Computes inverse hyperbolic cosine of x element-wise.
|
Add
<T extends
TType
>
|
Returns x + y element-wise.
|
AddManySparseToTensorsMap
|
Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles.
|
AddN
<T extends
TType
>
|
Add all input tensors element wise.
|
AddSparseToTensorsMap
|
Add a `SparseTensor` to a `SparseTensorsMap` return its handle.
|
AdjustContrast
<T extends
TNumber
>
|
Adjust the contrast of one or more images.
|
AdjustHue
<T extends
TNumber
>
|
Adjust the hue of one or more images.
|
AdjustSaturation
<T extends
TNumber
>
|
Adjust the saturation of one or more images.
|
All
|
Computes the "logical and" of elements across dimensions of a tensor.
|
AllCandidateSampler
|
Generates labels for candidate sampling with a learned unigram distribution.
|
AllReduce
<T extends
TNumber
>
|
Mutually reduces multiple tensors of identical type and shape.
|
AllToAll
<T extends
TType
>
|
An Op to exchange data across TPU replicas.
|
Angle
<U extends
TNumber
>
|
Returns the argument of a complex number.
|
AnonymousIterator
|
A container for an iterator resource.
|
AnonymousMemoryCache
|
|
AnonymousMultiDeviceIterator
|
A container for a multi device iterator resource.
|
AnonymousRandomSeedGenerator
|
|
AnonymousSeedGenerator
|
|
Any
|
Computes the "logical or" of elements across dimensions of a tensor.
|
ApplyAdaMax
<T extends
TType
>
|
Update '*var' according to the AdaMax algorithm.
|
ApplyAdadelta
<T extends
TType
>
|
Update '*var' according to the adadelta scheme.
|
ApplyAdagrad
<T extends
TType
>
|
Update '*var' according to the adagrad scheme.
|
ApplyAdagradDa
<T extends
TType
>
|
Update '*var' according to the proximal adagrad scheme.
|
ApplyAdagradV2
<T extends
TType
>
|
Update '*var' according to the adagrad scheme.
|
ApplyAdam
<T extends
TType
>
|
Update '*var' according to the Adam algorithm.
|
ApplyAddSign
<T extends
TType
>
|
Update '*var' according to the AddSign update.
|
ApplyCenteredRmsProp
<T extends
TType
>
|
Update '*var' according to the centered RMSProp algorithm.
|
ApplyFtrl
<T extends
TType
>
|
Update '*var' according to the Ftrl-proximal scheme.
|
ApplyGradientDescent
<T extends
TType
>
|
Update '*var' by subtracting 'alpha' * 'delta' from it.
|
ApplyMomentum
<T extends
TType
>
|
Update '*var' according to the momentum scheme.
|
ApplyPowerSign
<T extends
TType
>
|
Update '*var' according to the AddSign update.
|
ApplyProximalAdagrad
<T extends
TType
>
|
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
|
ApplyProximalGradientDescent
<T extends
TType
>
|
Update '*var' as FOBOS algorithm with fixed learning rate.
|
ApplyRmsProp
<T extends
TType
>
|
Update '*var' according to the RMSProp algorithm.
|
ApproximateEqual
|
Returns the truth value of abs(x-y) < tolerance element-wise.
|
ArgMax
<V extends
TNumber
>
|
Returns the index with the largest value across dimensions of a tensor.
|
ArgMin
<V extends
TNumber
>
|
Returns the index with the smallest value across dimensions of a tensor.
|
AsString
|
Converts each entry in the given tensor to strings.
|
Asin
<T extends
TType
>
|
Computes the trignometric inverse sine of x element-wise.
|
Asinh
<T extends
TType
>
|
Computes inverse hyperbolic sine of x element-wise.
|
AssertCardinalityDataset
|
|
AssertNextDataset
|
|
AssertThat
|
Asserts that the given condition is true.
|
Assign
<T extends
TType
>
|
Update 'ref' by assigning 'value' to it.
|
AssignAdd
<T extends
TType
>
|
Update 'ref' by adding 'value' to it.
|
AssignAddVariableOp
|
Adds a value to the current value of a variable.
|
AssignSub
<T extends
TType
>
|
Update 'ref' by subtracting 'value' from it.
|
AssignSubVariableOp
|
Subtracts a value from the current value of a variable.
|
AssignVariableOp
|
Assigns a new value to a variable.
|
Atan
<T extends
TType
>
|
Computes the trignometric inverse tangent of x element-wise.
|
Atan2
<T extends
TNumber
>
|
Computes arctangent of `y/x` element-wise, respecting signs of the arguments.
|
Atanh
<T extends
TType
>
|
Computes inverse hyperbolic tangent of x element-wise.
|
AudioSpectrogram
|
Produces a visualization of audio data over time.
|
AudioSummary
|
Outputs a `Summary` protocol buffer with audio.
|
AutoShardDataset
|
Creates a dataset that shards the input dataset.
|
AvgPool
<T extends
TNumber
>
|
Performs average pooling on the input.
|
AvgPool3d
<T extends
TNumber
>
|
Performs 3D average pooling on the input.
|
AvgPool3dGrad
<T extends
TNumber
>
|
Computes gradients of average pooling function.
|
AvgPoolGrad
<T extends
TNumber
>
|
Computes gradients of the average pooling function.
|
BandPart
<T extends
TType
>
|
Copy a tensor setting everything outside a central band in each innermost matrix to zero.
|
BandedTriangularSolve
<T extends
TType
>
|
|
Barrier
|
Defines a barrier that persists across different graph executions.
|
BarrierClose
|
Closes the given barrier.
|
BarrierIncompleteSize
|
Computes the number of incomplete elements in the given barrier.
|
BarrierInsertMany
|
For each key, assigns the respective value to the specified component.
|
BarrierReadySize
|
Computes the number of complete elements in the given barrier.
|
BarrierTakeMany
|
Takes the given number of completed elements from a barrier.
|
Batch
|
Batches all input tensors nondeterministically.
|
BatchCholesky
<T extends
TNumber
>
|
|
BatchCholeskyGrad
<T extends
TNumber
>
|
|
BatchDataset
|
Creates a dataset that batches `batch_size` elements from `input_dataset`.
|
BatchFft
|
|
BatchFft2d
|
|
BatchFft3d
|
|
BatchIfft
|
|
BatchIfft2d
|
|
BatchIfft3d
|
|
BatchMatMul
<T extends
TType
>
|
Multiplies slices of two tensors in batches.
|
BatchMatrixBandPart
<T extends
TType
>
|
|
BatchMatrixDeterminant
<T extends
TType
>
|
|
BatchMatrixDiag
<T extends
TType
>
|
|
BatchMatrixDiagPart
<T extends
TType
>
|
|
BatchMatrixInverse
<T extends
TNumber
>
|
|
BatchMatrixSetDiag
<T extends
TType
>
|
|
BatchMatrixSolve
<T extends
TNumber
>
|
|
BatchMatrixSolveLs
<T extends
TNumber
>
|
|
BatchMatrixTriangularSolve
<T extends
TNumber
>
|
|
BatchNormWithGlobalNormalization
<T extends
TType
>
|
Batch normalization.
|
BatchNormWithGlobalNormalizationGrad
<T extends
TType
>
|
Gradients for batch normalization.
|
BatchSelfAdjointEig
<T extends
TNumber
>
|
|
BatchSvd
<T extends
TType
>
|
|
BatchToSpace
<T extends
TType
>
|
BatchToSpace for 4-D tensors of type T.
|
BatchToSpaceNd
<T extends
TType
>
|
BatchToSpace for N-D tensors of type T.
|
BesselI0
<T extends
TNumber
>
|
|
BesselI0e
<T extends
TNumber
>
|
|
BesselI1
<T extends
TNumber
>
|
|
BesselI1e
<T extends
TNumber
>
|
|
BesselJ0
<T extends
TNumber
>
|
|
BesselJ1
<T extends
TNumber
>
|
|
BesselK0
<T extends
TNumber
>
|
|
BesselK0e
<T extends
TNumber
>
|
|
BesselK1
<T extends
TNumber
>
|
|
BesselK1e
<T extends
TNumber
>
|
|
BesselY0
<T extends
TNumber
>
|
|
BesselY1
<T extends
TNumber
>
|
|
Betainc
<T extends
TNumber
>
|
Compute the regularized incomplete beta integral \\(I_x(a, b)\\).
|
BiasAdd
<T extends
TType
>
|
Adds `bias` to `value`.
|
BiasAddGrad
<T extends
TType
>
|
The backward operation for "BiasAdd" on the "bias" tensor.
|
Bincount
<T extends
TNumber
>
|
Counts the number of occurrences of each value in an integer array.
|
Bitcast
<U extends
TType
>
|
Bitcasts a tensor from one type to another without copying data.
|
BitwiseAnd
<T extends
TNumber
>
|
Elementwise computes the bitwise AND of `x` and `y`.
|
BitwiseOr
<T extends
TNumber
>
|
Elementwise computes the bitwise OR of `x` and `y`.
|
BitwiseXor
<T extends
TNumber
>
|
Elementwise computes the bitwise XOR of `x` and `y`.
|
BlockLSTM
<T extends
TNumber
>
|
Computes the LSTM cell forward propagation for all the time steps.
|
BlockLSTMGrad
<T extends
TNumber
>
|
Computes the LSTM cell backward propagation for the entire time sequence.
|
BoostedTreesAggregateStats
|
Aggregates the summary of accumulated stats for the batch.
|
BoostedTreesBucketize
|
Bucketize each feature based on bucket boundaries.
|
BoostedTreesCalculateBestFeatureSplit
|
Calculates gains for each feature and returns the best possible split information for the feature.
|
BoostedTreesCalculateBestFeatureSplitV2
|
Calculates gains for each feature and returns the best possible split information for each node.
|
BoostedTreesCalculateBestGainsPerFeature
|
Calculates gains for each feature and returns the best possible split information for the feature.
|
BoostedTreesCenterBias
|
Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior.
|
BoostedTreesCreateEnsemble
|
Creates a tree ensemble model and returns a handle to it.
|
BoostedTreesCreateQuantileStreamResource
|
Create the Resource for Quantile Streams.
|
BoostedTreesDeserializeEnsemble
|
Deserializes a serialized tree ensemble config and replaces current tree
ensemble.
|
BoostedTreesEnsembleResourceHandleOp
|
Creates a handle to a BoostedTreesEnsembleResource
|
BoostedTreesExampleDebugOutputs
|
Debugging/model interpretability outputs for each example.
|
BoostedTreesFlushQuantileSummaries
|
Flush the quantile summaries from each quantile stream resource.
|
BoostedTreesGetEnsembleStates
|
Retrieves the tree ensemble resource stamp token, number of trees and growing statistics.
|
BoostedTreesMakeQuantileSummaries
|
Makes the summary of quantiles for the batch.
|
BoostedTreesMakeStatsSummary
|
Makes the summary of accumulated stats for the batch.
|
BoostedTreesPredict
|
Runs multiple additive regression ensemble predictors on input instances and
computes the logits.
|
BoostedTreesQuantileStreamResourceAddSummaries
|
Add the quantile summaries to each quantile stream resource.
|
BoostedTreesQuantileStreamResourceDeserialize
|
Deserialize bucket boundaries and ready flag into current QuantileAccumulator.
|
BoostedTreesQuantileStreamResourceFlush
|
Flush the summaries for a quantile stream resource.
|
BoostedTreesQuantileStreamResourceGetBucketBoundaries
|
Generate the bucket boundaries for each feature based on accumulated summaries.
|
BoostedTreesQuantileStreamResourceHandleOp
|
Creates a handle to a BoostedTreesQuantileStreamResource.
|
BoostedTreesSerializeEnsemble
|
Serializes the tree ensemble to a proto.
|
BoostedTreesSparseAggregateStats
|
Aggregates the summary of accumulated stats for the batch.
|
BoostedTreesSparseCalculateBestFeatureSplit
|
Calculates gains for each feature and returns the best possible split information for the feature.
|
BoostedTreesTrainingPredict
|
Runs multiple additive regression ensemble predictors on input instances and
computes the update to cached logits.
|
BoostedTreesUpdateEnsemble
|
Updates the tree ensemble by either adding a layer to the last tree being grown
or by starting a new tree.
|
BoostedTreesUpdateEnsembleV2
|
Updates the tree ensemble by adding a layer to the last tree being grown
or by starting a new tree.
|
BroadcastDynamicShape
<T extends
TNumber
>
|
Return the shape of s0 op s1 with broadcast.
|
BroadcastGradientArgs
<T extends
TNumber
>
|
Return the reduction indices for computing gradients of s0 op s1 with broadcast.
|
BroadcastHelper
<T extends
TType
>
|
Helper operator for performing XLA-style broadcasts
Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to
whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules
for binary operators.
|
BroadcastRecv
<T extends
TType
>
|
Receives a tensor value broadcast from another device.
|
BroadcastSend
<T extends
TType
>
|
Broadcasts a tensor value to one or more other devices.
|
BroadcastTo
<T extends
TType
>
|
Broadcast an array for a compatible shape.
|
Bucketize
|
Bucketizes 'input' based on 'boundaries'.
|
BytesProducedStatsDataset
|
Records the bytes size of each element of `input_dataset` in a StatsAggregator.
|
CSRSparseMatrixComponents
<T extends
TType
>
|
Reads out the CSR components at batch `index`.
|
CSRSparseMatrixToDense
<T extends
TType
>
|
Convert a (possibly batched) CSRSparseMatrix to dense.
|
CSRSparseMatrixToSparseTensor
<T extends
TType
>
|
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor.
|
CSVDataset
|
|
CSVDatasetV2
|
|
CTCLossV2
|
Calculates the CTC Loss (log probability) for each batch entry.
|
CacheDataset
|
Creates a dataset that caches elements from `input_dataset`.
|
CacheDatasetV2
|
|
Cast
<U extends
TType
>
|
Cast x of type SrcT to y of DstT.
|
Ceil
<T extends
TNumber
>
|
Returns element-wise smallest integer not less than x.
|
CheckNumerics
<T extends
TNumber
>
|
Checks a tensor for NaN, -Inf and +Inf values.
|
Cholesky
<T extends
TType
>
|
Computes the Cholesky decomposition of one or more square matrices.
|
CholeskyGrad
<T extends
TNumber
>
|
Computes the reverse mode backpropagated gradient of the Cholesky algorithm.
|
ChooseFastestDataset
|
|
ClipByValue
<T extends
TType
>
|
Clips tensor values to a specified min and max.
|
CloseSummaryWriter
|
|
ClusterOutput
<T extends
TType
>
|
Operator that connects the output of an XLA computation to other consumer graph nodes.
|
CollectiveGather
<T extends
TNumber
>
|
Mutually accumulates multiple tensors of identical type and shape.
|
CollectivePermute
<T extends
TType
>
|
An Op to permute tensors across replicated TPU instances.
|
CombinedNonMaxSuppression
|
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across
all classes.
|
CompareAndBitpack
|
Compare values of `input` to `threshold` and pack resulting bits into a `uint8`.
|
CompilationResult
|
Returns the result of a TPU compilation.
|
CompileSucceededAssert
|
Asserts that compilation succeeded.
|
Complex
<U extends
TType
>
|
Converts two real numbers to a complex number.
|
ComplexAbs
<U extends
TNumber
>
|
Computes the complex absolute value of a tensor.
|
CompressElement
|
Compresses a dataset element.
|
ComputeAccidentalHits
|
Computes the ids of the positions in sampled_candidates that match true_labels.
|
ComputeBatchSize
|
Computes the static batch size of a dataset sans partial batches.
|
Concat
<T extends
TType
>
|
Concatenates tensors along one dimension.
|
ConcatenateDataset
|
Creates a dataset that concatenates `input_dataset` with `another_dataset`.
|
ConditionalAccumulator
|
A conditional accumulator for aggregating gradients.
|
ConfigureDistributedTPU
|
Sets up the centralized structures for a distributed TPU system.
|
ConfigureTPUEmbedding
|
Sets up TPUEmbedding in a distributed TPU system.
|
Conj
<T extends
TType
>
|
Returns the complex conjugate of a complex number.
|
ConjugateTranspose
<T extends
TType
>
|
Shuffle dimensions of x according to a permutation and conjugate the result.
|
Constant
<T extends
TType
>
|
An operator producing a constant value.
|
ConsumeMutexLock
|
This op consumes a lock created by `MutexLock`.
|
ControlTrigger
|
Does nothing.
|
Conv
<T extends
TType
>
|
Wraps the XLA ConvGeneralDilated operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
.
|
Conv2d
<T extends
TNumber
>
|
Computes a 2-D convolution given 4-D `input` and `filter` tensors.
|
Conv2dBackpropFilter
<T extends
TNumber
>
|
Computes the gradients of convolution with respect to the filter.
|
Conv2dBackpropInput
<T extends
TNumber
>
|
Computes the gradients of convolution with respect to the input.
|
Conv3d
<T extends
TNumber
>
|
Computes a 3-D convolution given 5-D `input` and `filter` tensors.
|
Conv3dBackpropFilter
<T extends
TNumber
>
|
Computes the gradients of 3-D convolution with respect to the filter.
|
Conv3dBackpropInput
<U extends
TNumber
>
|
Computes the gradients of 3-D convolution with respect to the input.
|
Copy
<T extends
TType
>
|
Copy a tensor from CPU-to-CPU or GPU-to-GPU.
|
CopyHost
<T extends
TType
>
|
Copy a tensor to host.
|
Cos
<T extends
TType
>
|
Computes cos of x element-wise.
|
Cosh
<T extends
TType
>
|
Computes hyperbolic cosine of x element-wise.
|
CountUpTo
<T extends
TNumber
>
|
Increments 'ref' until it reaches 'limit'.
|
CreateSummaryDbWriter
|
|
CreateSummaryFileWriter
|
|
CropAndResize
|
Extracts crops from the input image tensor and resizes them.
|
CropAndResizeGradBoxes
|
Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
|
CropAndResizeGradImage
<T extends
TNumber
>
|
Computes the gradient of the crop_and_resize op wrt the input image tensor.
|
Cross
<T extends
TNumber
>
|
Compute the pairwise cross product.
|
CrossReplicaSum
<T extends
TNumber
>
|
An Op to sum inputs across replicated TPU instances.
|
CtcBeamSearchDecoder
<T extends
TNumber
>
|
Performs beam search decoding on the logits given in input.
|
CtcGreedyDecoder
<T extends
TNumber
>
|
Performs greedy decoding on the logits given in inputs.
|
CtcLoss
<T extends
TNumber
>
|
Calculates the CTC Loss (log probability) for each batch entry.
|
CudnnRNN
<T extends
TNumber
>
|
A RNN backed by cuDNN.
|
CudnnRNNBackprop
<T extends
TNumber
>
|
Backprop step of CudnnRNNV3.
|
CudnnRNNCanonicalToParams
<T extends
TNumber
>
|
Converts CudnnRNN params from canonical form to usable form.
|
CudnnRNNParamsToCanonical
<T extends
TNumber
>
|
Retrieves CudnnRNN params in canonical form.
|
CudnnRnnParamsSize
<U extends
TNumber
>
|
Computes size of weights that can be used by a Cudnn RNN model.
|
Cumprod
<T extends
TType
>
|
Compute the cumulative product of the tensor `x` along `axis`.
|
Cumsum
<T extends
TType
>
|
Compute the cumulative sum of the tensor `x` along `axis`.
|
CumulativeLogsumexp
<T extends
TNumber
>
|
Compute the cumulative product of the tensor `x` along `axis`.
|
DataFormatDimMap
<T extends
TNumber
>
|
Returns the dimension index in the destination data format given the one in
the source data format.
|
DataFormatVecPermute
<T extends
TNumber
>
|
Permute input tensor from `src_format` to `dst_format`.
|
DataServiceDataset
|
|
DatasetCardinality
|
Returns the cardinality of `input_dataset`.
|
DatasetFromGraph
|
Creates a dataset from the given `graph_def`.
|
DatasetToGraph
|
Returns a serialized GraphDef representing `input_dataset`.
|
DatasetToSingleElement
|
Outputs the single element from the given dataset.
|
DatasetToTFRecord
|
Writes the given dataset to the given file using the TFRecord format.
|
DatasetToTfRecord
|
Writes the given dataset to the given file using the TFRecord format.
|
Dawsn
<T extends
TNumber
>
|
|
DebugGradientIdentity
<T extends
TType
>
|
Identity op for gradient debugging.
|
DebugGradientRefIdentity
<T extends
TType
>
|
Identity op for gradient debugging.
|
DebugIdentity
<T extends
TType
>
|
Debug Identity V2 Op.
|
DebugNanCount
|
Debug NaN Value Counter Op.
|
DebugNumericsSummary
<U extends
TNumber
>
|
Debug Numeric Summary V2 Op.
|
DecodeAndCropJpeg
|
Decode and Crop a JPEG-encoded image to a uint8 tensor.
|
DecodeBase64
|
Decode web-safe base64-encoded strings.
|
DecodeBmp
|
Decode the first frame of a BMP-encoded image to a uint8 tensor.
|
DecodeCompressed
|
Decompress strings.
|
DecodeCsv
|
Convert CSV records to tensors.
|
DecodeGif
|
Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
|
DecodeImage
<T extends
TNumber
>
|
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
|
DecodeJpeg
|
Decode a JPEG-encoded image to a uint8 tensor.
|
DecodeJsonExample
|
Convert JSON-encoded Example records to binary protocol buffer strings.
|
DecodePaddedRaw
<T extends
TNumber
>
|
Reinterpret the bytes of a string as a vector of numbers.
|
DecodePng
<T extends
TNumber
>
|
Decode a PNG-encoded image to a uint8 or uint16 tensor.
|
DecodeProto
|
The op extracts fields from a serialized protocol buffers message into tensors.
|
DecodeRaw
<T extends
TType
>
|
Reinterpret the bytes of a string as a vector of numbers.
|
DecodeWav
|
Decode a 16-bit PCM WAV file to a float tensor.
|
DeepCopy
<T extends
TType
>
|
Makes a copy of `x`.
|
DeleteIterator
|
A container for an iterator resource.
|
DeleteMemoryCache
|
|
DeleteMultiDeviceIterator
|
A container for an iterator resource.
|
DeleteRandomSeedGenerator
|
|
DeleteSeedGenerator
|
|
DeleteSessionTensor
|
Delete the tensor specified by its handle in the session.
|
DenseBincount
<U extends
TNumber
>
|
Counts the number of occurrences of each value in an integer array.
|
DenseCountSparseOutput
<U extends
TNumber
>
|
Performs sparse-output bin counting for a tf.tensor input.
|
DenseToCSRSparseMatrix
|
Converts a dense tensor to a (possibly batched) CSRSparseMatrix.
|
DenseToDenseSetOperation
<T extends
TType
>
|
Applies set operation along last dimension of 2 `Tensor` inputs.
|
DenseToSparseBatchDataset
|
Creates a dataset that batches input elements into a SparseTensor.
|
DenseToSparseSetOperation
<T extends
TType
>
|
Applies set operation along last dimension of `Tensor` and `SparseTensor`.
|
DepthToSpace
<T extends
TType
>
|
DepthToSpace for tensors of type T.
|
DepthwiseConv2dNative
<T extends
TNumber
>
|
Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors.
|
DepthwiseConv2dNativeBackpropFilter
<T extends
TNumber
>
|
Computes the gradients of depthwise convolution with respect to the filter.
|
DepthwiseConv2dNativeBackpropInput
<T extends
TNumber
>
|
Computes the gradients of depthwise convolution with respect to the input.
|
Dequantize
|
Takes the packed uint32 input and unpacks the input to uint8 to do
Dequantization on device.
|
DeserializeIterator
|
Converts the given variant tensor to an iterator and stores it in the given resource.
|
DeserializeManySparse
<T extends
TType
>
|
Deserialize and concatenate `SparseTensors` from a serialized minibatch.
|
DeserializeSparse
<U extends
TType
>
|
Deserialize `SparseTensor` objects.
|
DestroyResourceOp
|
Deletes the resource specified by the handle.
|
DestroyTemporaryVariable
<T extends
TType
>
|
Destroys the temporary variable and returns its final value.
|
Det
<T extends
TType
>
|
Computes the determinant of one or more square matrices.
|
DeviceIndex
|
Return the index of device the op runs.
|
Digamma
<T extends
TNumber
>
|
Computes Psi, the derivative of Lgamma (the log of the absolute value of
`Gamma(x)`), element-wise.
|
Dilation2d
<T extends
TNumber
>
|
Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors.
|
Dilation2dBackpropFilter
<T extends
TNumber
>
|
Computes the gradient of morphological 2-D dilation with respect to the filter.
|
Dilation2dBackpropInput
<T extends
TNumber
>
|
Computes the gradient of morphological 2-D dilation with respect to the input.
|
DirectedInterleaveDataset
|
A substitute for `InterleaveDataset` on a fixed list of `N` datasets.
|
Div
<T extends
TType
>
|
Returns x / y element-wise.
|
DivNoNan
<T extends
TType
>
|
Returns 0 if the denominator is zero.
|
Dot
<T extends
TType
>
|
Wraps the XLA DotGeneral operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
.
|
DrawBoundingBoxes
<T extends
TNumber
>
|
Draw bounding boxes on a batch of images.
|
DummyIterationCounter
|
|
DummyMemoryCache
|
|
DummySeedGenerator
|
|
DynamicPartition
<T extends
TType
>
|
Partitions `data` into `num_partitions` tensors using indices from `partitions`.
|
DynamicSlice
<T extends
TType
>
|
Wraps the XLA DynamicSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice
.
|
DynamicStitch
<T extends
TType
>
|
Interleave the values from the `data` tensors into a single tensor.
|
DynamicUpdateSlice
<T extends
TType
>
|
Wraps the XLA DynamicUpdateSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice
.
|
EditDistance
|
Computes the (possibly normalized) Levenshtein Edit Distance.
|
Eig
<U extends
TType
>
|
Computes the eigen decomposition of one or more square matrices.
|
Einsum
<T extends
TType
>
|
An op which supports basic einsum op with 2 inputs and 1 output.
|
Elu
<T extends
TNumber
>
|
Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise.
|
EluGrad
<T extends
TNumber
>
|
Computes gradients for the exponential linear (Elu) operation.
|
EmbeddingActivations
|
An op enabling differentiation of TPU Embeddings.
|
Empty
<T extends
TType
>
|
Creates a tensor with the given shape.
|
EmptyTensorList
|
Creates and returns an empty tensor list.
|
EmptyTensorMap
|
Creates and returns an empty tensor map.
|
EncodeBase64
|
Encode strings into web-safe base64 format.
|
EncodeJpeg
|
JPEG-encode an image.
|
EncodeJpegVariableQuality
|
JPEG encode input image with provided compression quality.
|
EncodePng
|
PNG-encode an image.
|
EncodeProto
|
The op serializes protobuf messages provided in the input tensors.
|
EncodeWav
|
Encode audio data using the WAV file format.
|
EnqueueTPUEmbeddingIntegerBatch
|
An op that enqueues a list of input batch tensors to TPUEmbedding.
|
EnqueueTPUEmbeddingRaggedTensorBatch
|
Eases the porting of code that uses tf.nn.embedding_lookup().
|
EnqueueTPUEmbeddingSparseBatch
|
An op that enqueues TPUEmbedding input indices from a SparseTensor.
|
EnqueueTPUEmbeddingSparseTensorBatch
|
Eases the porting of code that uses tf.nn.embedding_lookup_sparse().
|
EnsureShape
<T extends
TType
>
|
Ensures that the tensor's shape matches the expected shape.
|
Enter
<T extends
TType
>
|
Creates or finds a child frame, and makes `data` available to the child frame.
|
Equal
|
Returns the truth value of (x == y) element-wise.
|
Erf
<T extends
TNumber
>
|
Computes the Gauss error function of `x` element-wise.
|
Erfc
<T extends
TNumber
>
|
Computes the complementary error function of `x` element-wise.
|
EuclideanNorm
<T extends
TType
>
|
Computes the euclidean norm of elements across dimensions of a tensor.
|
Execute
|
Op that loads and executes a TPU program on a TPU device.
|
ExecuteAndUpdateVariables
|
Op that executes a program with optional in-place variable updates.
|
Exit
<T extends
TType
>
|
Exits the current frame to its parent frame.
|
Exp
<T extends
TType
>
|
Computes exponential of x element-wise.
|
ExpandDims
<T extends
TType
>
|
Inserts a dimension of 1 into a tensor's shape.
|
Expint
<T extends
TNumber
>
|
|
Expm1
<T extends
TType
>
|
Computes `exp(x) - 1` element-wise.
|
ExtractGlimpse
|
Extracts a glimpse from the input tensor.
|
ExtractImagePatches
<T extends
TType
>
|
Extract `patches` from `images` and put them in the "depth" output dimension.
|
ExtractJpegShape
<T extends
TNumber
>
|
Extract the shape information of a JPEG-encoded image.
|
ExtractVolumePatches
<T extends
TNumber
>
|
Extract `patches` from `input` and put them in the `"depth"` output dimension.
|
Fact
|
Output a fact about factorials.
|
FakeQuantWithMinMaxArgs
|
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
|
FakeQuantWithMinMaxArgsGradient
|
Compute gradients for a FakeQuantWithMinMaxArgs operation.
|
FakeQuantWithMinMaxVars
|
Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the `inputs` tensor of type float via global float scalars
`min` and `max` to `outputs` tensor of same shape as `inputs`.
|
FakeQuantWithMinMaxVarsGradient
|
Compute gradients for a FakeQuantWithMinMaxVars operation.
|
FakeQuantWithMinMaxVarsPerChannel
|
Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the `inputs` tensor of type float per-channel and one of the
shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max`
of shape `[d]` to `outputs` tensor of same shape as `inputs`.
|
FakeQuantWithMinMaxVarsPerChannelGradient
|
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
|
Fft
<T extends
TType
>
|
Fast Fourier transform.
|
Fft2d
<T extends
TType
>
|
2D fast Fourier transform.
|
Fft3d
<T extends
TType
>
|
3D fast Fourier transform.
|
FifoQueue
|
A queue that produces elements in first-in first-out order.
|
Fill
<U extends
TType
>
|
Creates a tensor filled with a scalar value.
|
FilterByLastComponentDataset
|
Creates a dataset containing elements of first component of `input_dataset` having true in the last component.
|
Fingerprint
|
Generates fingerprint values.
|
FixedLengthRecordDataset
|
|
FixedLengthRecordReader
|
A Reader that outputs fixed-length records from a file.
|
FixedUnigramCandidateSampler
|
Generates labels for candidate sampling with a learned unigram distribution.
|
Floor
<T extends
TNumber
>
|
Returns element-wise largest integer not greater than x.
|
FloorDiv
<T extends
TType
>
|
Returns x // y element-wise.
|
FloorMod
<T extends
TNumber
>
|
Returns element-wise remainder of division.
|
FlushSummaryWriter
|
|
FractionalAvgPool
<T extends
TNumber
>
|
Performs fractional average pooling on the input.
|
FractionalAvgPoolGrad
<T extends
TNumber
>
|
Computes gradient of the FractionalAvgPool function.
|
FractionalMaxPool
<T extends
TNumber
>
|
Performs fractional max pooling on the input.
|
FractionalMaxPoolGrad
<T extends
TNumber
>
|
Computes gradient of the FractionalMaxPool function.
|
FresnelCos
<T extends
TNumber
>
|
|
FresnelSin
<T extends
TNumber
>
|
|
FusedBatchNorm
<T extends
TNumber
, U extends
TNumber
>
|
Batch normalization.
|
FusedBatchNormGrad
<T extends
TNumber
, U extends
TNumber
>
|
Gradient for batch normalization.
|
FusedPadConv2d
<T extends
TNumber
>
|
Performs a padding as a preprocess during a convolution.
|
FusedResizeAndPadConv2d
<T extends
TNumber
>
|
Performs a resize and padding as a preprocess during a convolution.
|
GRUBlockCell
<T extends
TNumber
>
|
Computes the GRU cell forward propagation for 1 time step.
|
GRUBlockCellGrad
<T extends
TNumber
>
|
Computes the GRU cell back-propagation for 1 time step.
|
Gather
<T extends
TType
>
|
Wraps the XLA Gather operator documented at
https://www.tensorflow.org/xla/operation_semantics#gather
|
GatherNd
<T extends
TType
>
|
Gather slices from `params` into a Tensor with shape specified by `indices`.
|
GatherV2
<T extends
TNumber
>
|
Mutually accumulates multiple tensors of identical type and shape.
|
GenerateBoundingBoxProposals
|
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors,
applies non-maximal suppression on overlapping boxes with higher than
`nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter
side is less than `min_size`.
|
GenerateVocabRemapping
|
Given a path to new and old vocabulary files, returns a remapping Tensor of
length `num_new_vocab`, where `remapping[i]` contains the row number in the old
vocabulary that corresponds to row `i` in the new vocabulary (starting at line
`new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i`
in the new vocabulary is not in the old vocabulary.
|
GetSessionHandle
|
Store the input tensor in the state of the current session.
|
GetSessionTensor
<T extends
TType
>
|
Get the value of the tensor specified by its handle.
|
Greater
|
Returns the truth value of (x > y) element-wise.
|
GreaterEqual
|
Returns the truth value of (x >= y) element-wise.
|
GuaranteeConst
<T extends
TType
>
|
Gives a guarantee to the TF runtime that the input tensor is a constant.
|
HashTable
|
Creates a non-initialized hash table.
|
HistogramFixedWidth
<U extends
TNumber
>
|
Return histogram of values.
|
HistogramSummary
|
Outputs a `Summary` protocol buffer with a histogram.
|
HsvToRgb
<T extends
TNumber
>
|
Convert one or more images from HSV to RGB.
|
Identity
<T extends
TType
>
|
Return a tensor with the same shape and contents as the input tensor or value.
|
IdentityN
|
Returns a list of tensors with the same shapes and contents as the input
tensors.
|
IdentityReader
|
A Reader that outputs the queued work as both the key and value.
|
Ifft
<T extends
TType
>
|
Inverse fast Fourier transform.
|
Ifft2d
<T extends
TType
>
|
Inverse 2D fast Fourier transform.
|
Ifft3d
<T extends
TType
>
|
Inverse 3D fast Fourier transform.
|
Igamma
<T extends
TNumber
>
|
Compute the lower regularized incomplete Gamma function `P(a, x)`.
|
IgammaGradA
<T extends
TNumber
>
|
Computes the gradient of `igamma(a, x)` wrt `a`.
|
Igammac
<T extends
TNumber
>
|
Compute the upper regularized incomplete Gamma function `Q(a, x)`.
|
IgnoreErrorsDataset
|
Creates a dataset that contains the elements of `input_dataset` ignoring errors.
|
Imag
<U extends
TNumber
>
|
Returns the imaginary part of a complex number.
|
ImageProjectiveTransformV2
<T extends
TNumber
>
|
Applies the given transform to each of the images.
|
ImageProjectiveTransformV3
<T extends
TNumber
>
|
Applies the given transform to each of the images.
|
ImageSummary
|
Outputs a `Summary` protocol buffer with images.
|
ImmutableConst
<T extends
TType
>
|
Returns immutable tensor from memory region.
|
ImportEvent
|
|
InTopK
|
Says whether the targets are in the top `K` predictions.
|
InfeedDequeue
<T extends
TType
>
|
A placeholder op for a value that will be fed into the computation.
|
InfeedDequeueTuple
|
Fetches multiple values from infeed as an XLA tuple.
|
InfeedEnqueue
|
An op which feeds a single Tensor value into the computation.
|
InfeedEnqueuePrelinearizedBuffer
|
An op which enqueues prelinearized buffer into TPU infeed.
|
InfeedEnqueueTuple
|
Feeds multiple Tensor values into the computation as an XLA tuple.
|
Init
|
|
InitializeTable
|
Table initializer that takes two tensors for keys and values respectively.
|
InitializeTableFromDataset
|
|
InitializeTableFromTextFile
|
Initializes a table from a text file.
|
InplaceAdd
<T extends
TType
>
|
Adds v into specified rows of x.
|
InplaceSub
<T extends
TType
>
|
Subtracts `v` into specified rows of `x`.
|
InplaceUpdate
<T extends
TType
>
|
Updates specified rows 'i' with values 'v'.
|
Inv
<T extends
TType
>
|
Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
|
InvGrad
<T extends
TType
>
|
Computes the gradient for the inverse of `x` wrt its input.
|
Invert
<T extends
TNumber
>
|
Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010.
|
InvertPermutation
<T extends
TNumber
>
|
Computes the inverse permutation of a tensor.
|
Irfft
<U extends
TNumber
>
|
Inverse real-valued fast Fourier transform.
|
Irfft2d
<U extends
TNumber
>
|
Inverse 2D real-valued fast Fourier transform.
|
Irfft3d
<U extends
TNumber
>
|
Inverse 3D real-valued fast Fourier transform.
|
IsBoostedTreesEnsembleInitialized
|
Checks whether a tree ensemble has been initialized.
|
IsBoostedTreesQuantileStreamResourceInitialized
|
Checks whether a quantile stream has been initialized.
|
IsFinite
|
Returns which elements of x are finite.
|
IsInf
|
Returns which elements of x are Inf.
|
IsNan
|
Returns which elements of x are NaN.
|
IsVariableInitialized
|
Checks whether a tensor has been initialized.
|
IsotonicRegression
<U extends
TNumber
>
|
Solves a batch of isotonic regression problems.
|
Iterator
|
|
IteratorFromStringHandle
|
|
IteratorGetDevice
|
Returns the name of the device on which `resource` has been placed.
|
IteratorGetNext
|
Gets the next output from the given iterator .
|
IteratorGetNextAsOptional
|
Gets the next output from the given iterator as an Optional variant.
|
IteratorGetNextSync
|
Gets the next output from the given iterator.
|
IteratorToStringHandle
|
Converts the given `resource_handle` representing an iterator to a string.
|
Join
|
Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator).
|
KMC2ChainInitialization
|
Returns the index of a data point that should be added to the seed set.
|
KeyValueSort
<T extends
TNumber
, U extends
TType
>
|
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
.
|
KmeansPlusPlusInitialization
|
Selects num_to_sample rows of input using the KMeans++ criterion.
|
KthOrderStatistic
|
Computes the Kth order statistic of a data set.
|
L2Loss
<T extends
TNumber
>
|
L2 Loss.
|
LMDBDataset
|
Creates a dataset that emits the key-value pairs in one or more LMDB files.
|
LSTMBlockCell
<T extends
TNumber
>
|
Computes the LSTM cell forward propagation for 1 time step.
|
LSTMBlockCellGrad
<T extends
TNumber
>
|
Computes the LSTM cell backward propagation for 1 timestep.
|
LatencyStatsDataset
|
Records the latency of producing `input_dataset` elements in a StatsAggregator.
|
LeakyRelu
<T extends
TNumber
>
|
Computes rectified linear: `max(features, features * alpha)`.
|
LeakyReluGrad
<T extends
TNumber
>
|
Computes rectified linear gradients for a LeakyRelu operation.
|
LearnedUnigramCandidateSampler
|
Generates labels for candidate sampling with a learned unigram distribution.
|
LeftShift
<T extends
TNumber
>
|
Elementwise computes the bitwise left-shift of `x` and `y`.
|
Less
|
Returns the truth value of (x < y) element-wise.
|
LessEqual
|
Returns the truth value of (x <= y) element-wise.
|
Lgamma
<T extends
TNumber
>
|
Computes the log of the absolute value of `Gamma(x)` element-wise.
|
LinSpace
<T extends
TNumber
>
|
Generates values in an interval.
|
LmdbDataset
|
|
LmdbReader
|
A Reader that outputs the records from a LMDB file.
|
LoadAndRemapMatrix
|
Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint
at `ckpt_path` and potentially reorders its rows and columns using the
specified remappings.
|
LoadTPUEmbeddingADAMParameters
|
Load ADAM embedding parameters.
|
LoadTPUEmbeddingADAMParametersGradAccumDebug
|
Load ADAM embedding parameters with debug support.
|
LoadTPUEmbeddingAdadeltaParameters
|
Load Adadelta embedding parameters.
|
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug
|
Load Adadelta parameters with debug support.
|
LoadTPUEmbeddingAdagradParameters
|
Load Adagrad embedding parameters.
|
LoadTPUEmbeddingAdagradParametersGradAccumDebug
|
Load Adagrad embedding parameters with debug support.
|
LoadTPUEmbeddingCenteredRMSPropParameters
|
Load centered RMSProp embedding parameters.
|
LoadTPUEmbeddingFTRLParameters
|
Load FTRL embedding parameters.
|
LoadTPUEmbeddingFTRLParametersGradAccumDebug
|
Load FTRL embedding parameters with debug support.
|
LoadTPUEmbeddingMDLAdagradLightParameters
|
Load MDL Adagrad Light embedding parameters.
|
LoadTPUEmbeddingMomentumParameters
|
Load Momentum embedding parameters.
|
LoadTPUEmbeddingMomentumParametersGradAccumDebug
|
Load Momentum embedding parameters with debug support.
|
LoadTPUEmbeddingProximalAdagradParameters
|
Load proximal Adagrad embedding parameters.
|
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug
|
Load proximal Adagrad embedding parameters with debug support.
|
LoadTPUEmbeddingProximalYogiParameters
|
|
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug
|
|
LoadTPUEmbeddingRMSPropParameters
|
Load RMSProp embedding parameters.
|
LoadTPUEmbeddingRMSPropParametersGradAccumDebug
|
Load RMSProp embedding parameters with debug support.
|
LoadTPUEmbeddingStochasticGradientDescentParameters
|
Load SGD embedding parameters.
|
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
|
Load SGD embedding parameters.
|
LocalResponseNormalization
<T extends
TNumber
>
|
Local Response Normalization.
|
LocalResponseNormalizationGrad
<T extends
TNumber
>
|
Gradients for Local Response Normalization.
|
Log
<T extends
TType
>
|
Computes natural logarithm of x element-wise.
|
Log1p
<T extends
TType
>
|
Computes natural logarithm of (1 + x) element-wise.
|
LogMatrixDeterminant
<T extends
TType
>
|
Computes the sign and the log of the absolute value of the determinant of
one or more square matrices.
|
LogSoftmax
<T extends
TNumber
>
|
Computes log softmax activations.
|
LogUniformCandidateSampler
|
Generates labels for candidate sampling with a log-uniform distribution.
|
LogicalAnd
|
Returns the truth value of x AND y element-wise.
|
LogicalNot
|
Returns the truth value of `NOT x` element-wise.
|
LogicalOr
|
Returns the truth value of x OR y element-wise.
|
LookupTableExport
<T extends
TType
, U extends
TType
>
|
Outputs all keys and values in the table.
|
LookupTableFind
<U extends
TType
>
|
Looks up keys in a table, outputs the corresponding values.
|
LookupTableImport
|
Replaces the contents of the table with the specified keys and values.
|
LookupTableInsert
|
Updates the table to associates keys with values.
|
LookupTableRemove
|
Removes keys and its associated values from a table.
|
LookupTableSize
|
Computes the number of elements in the given table.
|
LoopCond
|
Forwards the input to the output.
|
Lower
|
Converts all uppercase characters into their respective lowercase replacements.
|
LowerBound
<U extends
TNumber
>
|
Applies lower_bound(sorted_search_values, values) along each row.
|
Lu
<T extends
TType
, U extends
TNumber
>
|
Computes the LU decomposition of one or more square matrices.
|
MakeIterator
|
Makes a new iterator from the given `dataset` and stores it in `iterator`.
|
MakeUnique
|
Make all elements in the non-Batch dimension unique, but \"close\" to
their initial value.
|
MapClear
|
Op removes all elements in the underlying container.
|
MapIncompleteSize
|
Op returns the number of incomplete elements in the underlying container.
|
MapPeek
|
Op peeks at the values at the specified key.
|
MapSize
|
Op returns the number of elements in the underlying container.
|
MapStage
|
Stage (key, values) in the underlying container which behaves like a hashtable.
|
MapUnstage
|
Op removes and returns the values associated with the key
from the underlying container.
|
MapUnstageNoKey
|
Op removes and returns a random (key, value)
from the underlying container.
|
MatMul
<T extends
TType
>
|
Multiply the matrix "a" by the matrix "b".
|
MatchingFiles
|
Returns the set of files matching one or more glob patterns.
|
MatchingFilesDataset
|
|
MatrixDiag
<T extends
TType
>
|
Returns a batched diagonal tensor with given batched diagonal values.
|
MatrixDiagPart
<T extends
TType
>
|
Returns the batched diagonal part of a batched tensor.
|
MatrixDiagPartV3
<T extends
TType
>
|
Returns the batched diagonal part of a batched tensor.
|
MatrixDiagV3
<T extends
TType
>
|
Returns a batched diagonal tensor with given batched diagonal values.
|
MatrixLogarithm
<T extends
TType
>
|
Computes the matrix logarithm of one or more square matrices:
\\(log(exp(A)) = A\\)
This op is only defined for complex matrices.
|
MatrixSetDiag
<T extends
TType
>
|
Returns a batched matrix tensor with new batched diagonal values.
|
MatrixSolveLs
<T extends
TType
>
|
Solves one or more linear least-squares problems.
|
Max
<T extends
TType
>
|
Computes the maximum of elements across dimensions of a tensor.
|
MaxIntraOpParallelismDataset
|
Creates a dataset that overrides the maximum intra-op parallelism.
|
MaxPool
<T extends
TType
>
|
Performs max pooling on the input.
|
MaxPool3d
<T extends
TNumber
>
|
Performs 3D max pooling on the input.
|
MaxPool3dGrad
<U extends
TNumber
>
|
Computes gradients of 3D max pooling function.
|
MaxPool3dGradGrad
<T extends
TNumber
>
|
Computes second-order gradients of the maxpooling function.
|
MaxPoolGrad
<T extends
TNumber
>
|
Computes gradients of the maxpooling function.
|
MaxPoolGradGrad
<T extends
TNumber
>
|
Computes second-order gradients of the maxpooling function.
|
MaxPoolGradGradWithArgmax
<T extends
TNumber
>
|
Computes second-order gradients of the maxpooling function.
|
MaxPoolGradWithArgmax
<T extends
TNumber
>
|
Computes gradients of the maxpooling function.
|
MaxPoolWithArgmax
<T extends
TNumber
, U extends
TNumber
>
|
Performs max pooling on the input and outputs both max values and indices.
|
Maximum
<T extends
TNumber
>
|
Returns the max of x and y (i.e.
|
Mean
<T extends
TType
>
|
Computes the mean of elements across dimensions of a tensor.
|
Merge
<T extends
TType
>
|
Forwards the value of an available tensor from `inputs` to `output`.
|
MergeSummary
|
Merges summaries.
|
MergeV2Checkpoints
|
V2 format specific: merges the metadata files of sharded checkpoints.
|
Mfcc
|
Transforms a spectrogram into a form that's useful for speech recognition.
|
Min
<T extends
TType
>
|
Computes the minimum of elements across dimensions of a tensor.
|
Minimum
<T extends
TNumber
>
|
Returns the min of x and y (i.e.
|
MirrorPad
<T extends
TType
>
|
Pads a tensor with mirrored values.
|
MirrorPadGrad
<T extends
TType
>
|
Gradient op for `MirrorPad` op.
|
MlirPassthroughOp
|
Wraps an arbitrary MLIR computation expressed as a module with a main() function.
|
Mod
<T extends
TNumber
>
|
Returns element-wise remainder of division.
|
ModelDataset
|
Identity transformation that models performance.
|
Mul
<T extends
TType
>
|
Returns x * y element-wise.
|
MulNoNan
<T extends
TType
>
|
Returns x * y element-wise.
|
MultiDeviceIterator
|
Creates a MultiDeviceIterator resource.
|
MultiDeviceIteratorFromStringHandle
|
Generates a MultiDeviceIterator resource from its provided string handle.
|
MultiDeviceIteratorGetNextFromShard
|
Gets next element for the provided shard number.
|
MultiDeviceIteratorInit
|
Initializes the multi device iterator with the given dataset.
|
MultiDeviceIteratorToStringHandle
|
Produces a string handle for the given MultiDeviceIterator.
|
Multinomial
<U extends
TNumber
>
|
Draws samples from a multinomial distribution.
|
MutableDenseHashTable
|
Creates an empty hash table that uses tensors as the backing store.
|
MutableHashTable
|
Creates an empty hash table.
|
MutableHashTableOfTensors
|
Creates an empty hash table.
|
Mutex
|
Creates a Mutex resource that can be locked by `MutexLock`.
|
MutexLock
|
Locks a mutex resource.
|
NcclAllReduce
<T extends
TNumber
>
|
Outputs a tensor containing the reduction across all input tensors.
|
NcclBroadcast
<T extends
TNumber
>
|
Sends `input` to all devices that are connected to the output.
|
NcclReduce
<T extends
TNumber
>
|
Reduces `input` from `num_devices` using `reduction` to a single device.
|
Ndtri
<T extends
TNumber
>
|
|
NearestNeighbors
|
Selects the k nearest centers for each point.
|
Neg
<T extends
TType
>
|
Computes numerical negative value element-wise.
|
NegTrain
|
Training via negative sampling.
|
NextAfter
<T extends
TNumber
>
|
Returns the next representable value of `x1` in the direction of `x2`, element-wise.
|
NextIteration
<T extends
TType
>
|
Makes its input available to the next iteration.
|
NoOp
|
Does nothing.
|
NonDeterministicInts
<U extends
TType
>
|
Non-deterministically generates some integers.
|
NonMaxSuppression
<T extends
TNumber
>
|
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes.
|
NonMaxSuppressionWithOverlaps
|
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps
with previously selected boxes.
|
NonSerializableDataset
|
|
NotEqual
|
Returns the truth value of (x != y) element-wise.
|
NthElement
<T extends
TNumber
>
|
Finds values of the `n`-th order statistic for the last dimension.
|
OneHot
<U extends
TType
>
|
Returns a one-hot tensor.
|
OnesLike
<T extends
TType
>
|
Returns a tensor of ones with the same shape and type as x.
|
OptimizeDataset
|
Creates a dataset by applying optimizations to `input_dataset`.
|
OptimizeDatasetV2
|
Creates a dataset by applying related optimizations to `input_dataset`.
|
OptionalFromValue
|
Constructs an Optional variant from a tuple of tensors.
|
OptionalGetValue
|
Returns the value stored in an Optional variant or raises an error if none exists.
|
OptionalHasValue
|
Returns true if and only if the given Optional variant has a value.
|
OptionalNone
|
Creates an Optional variant with no value.
|
OrderedMapClear
|
Op removes all elements in the underlying container.
|
OrderedMapIncompleteSize
|
Op returns the number of incomplete elements in the underlying container.
|
OrderedMapPeek
|
Op peeks at the values at the specified key.
|
OrderedMapSize
|
Op returns the number of elements in the underlying container.
|
OrderedMapStage
|
Stage (key, values) in the underlying container which behaves like a ordered
associative container.
|
OrderedMapUnstage
|
Op removes and returns the values associated with the key
from the underlying container.
|
OrderedMapUnstageNoKey
|
Op removes and returns the (key, value) element with the smallest
key from the underlying container.
|
OrdinalSelector
|
A TPU core selector Op.
|
OutfeedDequeue
<T extends
TType
>
|
Retrieves a single tensor from the computation outfeed.
|
OutfeedDequeueTuple
|
Retrieve multiple values from the computation outfeed.
|
OutfeedDequeueTupleV2
|
Retrieve multiple values from the computation outfeed.
|
OutfeedDequeueV2
<T extends
TType
>
|
Retrieves a single tensor from the computation outfeed.
|
OutfeedEnqueue
|
Enqueue a Tensor on the computation outfeed.
|
OutfeedEnqueueTuple
|
Enqueue multiple Tensor values on the computation outfeed.
|
Pad
<T extends
TType
>
|
Wraps the XLA Pad operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#pad
.
|
PaddedBatchDataset
|
Creates a dataset that batches and pads `batch_size` elements from the input.
|
PaddingFifoQueue
|
A queue that produces elements in first-in first-out order.
|
ParallelConcat
<T extends
TType
>
|
Concatenates a list of `N` tensors along the first dimension.
|
ParallelDynamicStitch
<T extends
TType
>
|
Interleave the values from the `data` tensors into a single tensor.
|
ParameterizedTruncatedNormal
<U extends
TNumber
>
|
Outputs random values from a normal distribution.
|
ParseExample
|
Transforms a vector of tf.Example protos (as strings) into typed tensors.
|
ParseExampleDataset
|
Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features.
|
ParseSequenceExample
|
Transforms a vector of tf.io.SequenceExample protos (as strings) into
typed tensors.
|
ParseSingleExample
|
Transforms a tf.Example proto (as a string) into typed tensors.
|
ParseSingleSequenceExample
|
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
|
ParseTensor
<T extends
TType
>
|
Transforms a serialized tensorflow.TensorProto proto into a Tensor.
|
PartitionedInput
<T extends
TType
>
|
An op that groups a list of partitioned inputs together.
|
PartitionedOutput
<T extends
TType
>
|
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation.
|
Placeholder
<T extends
TType
>
|
A placeholder op for a value that will be fed into the computation.
|
PlaceholderWithDefault
<T extends
TType
>
|
A placeholder op that passes through `input` when its output is not fed.
|
Polygamma
<T extends
TNumber
>
|
Compute the polygamma function \\(\psi^{(n)}(x)\\).
|
PopulationCount
|
Computes element-wise population count (a.k.a.
|
Pow
<T extends
TType
>
|
Computes the power of one value to another.
|
PrefetchDataset
|
Creates a dataset that asynchronously prefetches elements from `input_dataset`.
|
Prelinearize
|
An op which linearizes one Tensor value to an opaque variant tensor.
|
PrelinearizeTuple
|
An op which linearizes multiple Tensor values to an opaque variant tensor.
|
PreventGradient
<T extends
TType
>
|
An identity op that triggers an error if a gradient is requested.
|
Print
|
Prints a string scalar.
|
PriorityQueue
|
A queue that produces elements sorted by the first component value.
|
PrivateThreadPoolDataset
|
Creates a dataset that uses a custom thread pool to compute `input_dataset`.
|
Prod
<T extends
TType
>
|
Computes the product of elements across dimensions of a tensor.
|
Qr
<T extends
TType
>
|
Computes the QR decompositions of one or more matrices.
|
Quantize
<T extends
TType
>
|
Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
|
QuantizeAndDequantize
<T extends
TNumber
>
|
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantizeV3
<T extends
TNumber
>
|
Quantizes then dequantizes a tensor.
|
QuantizeAndDequantizeV4
<T extends
TNumber
>
|
Returns the gradient of `quantization.QuantizeAndDequantizeV4`.
|
QuantizeAndDequantizeV4Grad
<T extends
TNumber
>
|
Returns the gradient of `QuantizeAndDequantizeV4`.
|
QuantizeDownAndShrinkRange
<U extends
TType
>
|
Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth
and adjusting the output min and max ranges accordingly.
|
QuantizedAdd
<V extends
TType
>
|
Returns x + y element-wise, working on quantized buffers.
|
QuantizedAvgPool
<T extends
TType
>
|
Produces the average pool of the input tensor for quantized types.
|
QuantizedBatchNormWithGlobalNormalization
<U extends
TType
>
|
Quantized Batch normalization.
|
QuantizedBiasAdd
<V extends
TType
>
|
Adds Tensor 'bias' to Tensor 'input' for Quantized types.
|
QuantizedConcat
<T extends
TType
>
|
Concatenates quantized tensors along one dimension.
|
QuantizedConv2DAndRelu
<V extends
TType
>
|
|
QuantizedConv2DAndReluAndRequantize
<V extends
TType
>
|
|
QuantizedConv2DAndRequantize
<V extends
TType
>
|
|
QuantizedConv2DPerChannel
<V extends
TType
>
|
Computes QuantizedConv2D per channel.
|
QuantizedConv2DWithBias
<V extends
TType
>
|
|
QuantizedConv2DWithBiasAndRelu
<V extends
TType
>
|
|
QuantizedConv2DWithBiasAndReluAndRequantize
<W extends
TType
>
|
|
QuantizedConv2DWithBiasAndRequantize
<W extends
TType
>
|
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize
<X extends
TType
>
|
|
QuantizedConv2DWithBiasSumAndRelu
<V extends
TType
>
|
|
QuantizedConv2DWithBiasSumAndReluAndRequantize
<X extends
TType
>
|
|
QuantizedConv2d
<V extends
TType
>
|
Computes a 2D convolution given quantized 4D input and filter tensors.
|
QuantizedDepthwiseConv2D
<V extends
TType
>
|
Computes quantized depthwise Conv2D.
|
QuantizedDepthwiseConv2DWithBias
<V extends
TType
>
|
Computes quantized depthwise Conv2D with Bias.
|
QuantizedDepthwiseConv2DWithBiasAndRelu
<V extends
TType
>
|
Computes quantized depthwise Conv2D with Bias and Relu.
|
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize
<W extends
TType
>
|
Computes quantized depthwise Conv2D with Bias, Relu and Requantize.
|
QuantizedInstanceNorm
<T extends
TType
>
|
Quantized Instance normalization.
|
QuantizedMatMul
<V extends
TType
>
|
Perform a quantized matrix multiplication of `a` by the matrix `b`.
|
QuantizedMatMulWithBias
<W extends
TType
>
|
Performs a quantized matrix multiplication of `a` by the matrix `b` with bias
add.
|
QuantizedMatMulWithBiasAndDequantize
<W extends
TNumber
>
|
|
QuantizedMatMulWithBiasAndRelu
<V extends
TType
>
|
Perform a quantized matrix multiplication of `a` by the matrix `b` with bias
add and relu fusion.
|
QuantizedMatMulWithBiasAndReluAndRequantize
<W extends
TType
>
|
Perform a quantized matrix multiplication of `a` by the matrix `b` with bias
add and relu and requantize fusion.
|
QuantizedMatMulWithBiasAndRequantize
<W extends
TType
>
|
|
QuantizedMaxPool
<T extends
TType
>
|
Produces the max pool of the input tensor for quantized types.
|
QuantizedMul
<V extends
TType
>
|
Returns x * y element-wise, working on quantized buffers.
|
QuantizedRelu
<U extends
TType
>
|
Computes Quantized Rectified Linear: `max(features, 0)`
|
QuantizedRelu6
<U extends
TType
>
|
Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)`
|
QuantizedReluX
<U extends
TType
>
|
Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)`
|
QuantizedReshape
<T extends
TType
>
|
Reshapes a quantized tensor as per the Reshape op.
|
QuantizedResizeBilinear
<T extends
TType
>
|
Resize quantized `images` to `size` using quantized bilinear interpolation.
|
QueueClose
|
Closes the given queue.
|
QueueDequeue
|
Dequeues a tuple of one or more tensors from the given queue.
|
QueueDequeueMany
|
Dequeues `n` tuples of one or more tensors from the given queue.
|
QueueDequeueUpTo
|
Dequeues `n` tuples of one or more tensors from the given queue.
|
QueueEnqueue
|
Enqueues a tuple of one or more tensors in the given queue.
|
QueueEnqueueMany
|
Enqueues zero or more tuples of one or more tensors in the given queue.
|
QueueIsClosed
|
Returns true if queue is closed.
|
QueueSize
|
Computes the number of elements in the given queue.
|
RaggedBincount
<U extends
TNumber
>
|
Counts the number of occurrences of each value in an integer array.
|
RaggedCountSparseOutput
<U extends
TNumber
>
|
Performs sparse-output bin counting for a ragged tensor input.
|
RaggedCross
<T extends
TType
, U extends
TNumber
>
|
Generates a feature cross from a list of tensors, and returns it as a
RaggedTensor.
|
RaggedGather
<T extends
TNumber
, U extends
TType
>
|
Gather ragged slices from `params` axis `0` according to `indices`.
|
RaggedRange
<U extends
TNumber
, T extends
TNumber
>
|
Returns a `RaggedTensor` containing the specified sequences of numbers.
|
RaggedTensorFromVariant
<U extends
TNumber
, T extends
TType
>
|
Decodes a `variant` Tensor into a `RaggedTensor`.
|
RaggedTensorToSparse
<U extends
TType
>
|
Converts a `RaggedTensor` into a `SparseTensor` with the same values.
|
RaggedTensorToTensor
<U extends
TType
>
|
Create a dense tensor from a ragged tensor, possibly altering its shape.
|
RaggedTensorToVariant
|
Encodes a `RaggedTensor` into a `variant` Tensor.
|
RaggedTensorToVariantGradient
<U extends
TType
>
|
Helper used to compute the gradient for `RaggedTensorToVariant`.
|
RandomCrop
<T extends
TNumber
>
|
Randomly crop `image`.
|
RandomDataset
|
Creates a Dataset that returns pseudorandom numbers.
|
RandomGamma
<U extends
TNumber
>
|
Outputs random values from the Gamma distribution(s) described by alpha.
|
RandomGammaGrad
<T extends
TNumber
>
|
Computes the derivative of a Gamma random sample w.r.t.
|
RandomPoisson
<V extends
TNumber
>
|
Outputs random values from the Poisson distribution(s) described by rate.
|
RandomShuffle
<T extends
TType
>
|
Randomly shuffles a tensor along its first dimension.
|
RandomShuffleQueue
|
A queue that randomizes the order of elements.
|
RandomStandardNormal
<U extends
TNumber
>
|
Outputs random values from a normal distribution.
|
RandomUniform
<U extends
TNumber
>
|
Outputs random values from a uniform distribution.
|
RandomUniformInt
<U extends
TNumber
>
|
Outputs random integers from a uniform distribution.
|
Range
<T extends
TNumber
>
|
Creates a sequence of numbers.
|
RangeDataset
|
Creates a dataset with a range of values.
|
Rank
|
Returns the rank of a tensor.
|
ReadFile
|
Reads and outputs the entire contents of the input filename.
|
ReadVariableOp
<T extends
TType
>
|
Reads the value of a variable.
|
ReaderNumRecordsProduced
|
Returns the number of records this Reader has produced.
|
ReaderNumWorkUnitsCompleted
|
Returns the number of work units this Reader has finished processing.
|
ReaderRead
|
Returns the next record (key, value pair) produced by a Reader.
|
ReaderReadUpTo
|
Returns up to `num_records` (key, value) pairs produced by a Reader.
|
ReaderReset
|
Restore a Reader to its initial clean state.
|
ReaderRestoreState
|
Restore a reader to a previously saved state.
|
ReaderSerializeState
|
Produce a string tensor that encodes the state of a Reader.
|
Real
<U extends
TNumber
>
|
Returns the real part of a complex number.
|
RealDiv
<T extends
TType
>
|
Returns x / y element-wise for real types.
|
RebatchDataset
|
Creates a dataset that changes the batch size.
|
RebatchDatasetV2
|
Creates a dataset that changes the batch size.
|
Reciprocal
<T extends
TType
>
|
Computes the reciprocal of x element-wise.
|
ReciprocalGrad
<T extends
TType
>
|
Computes the gradient for the inverse of `x` wrt its input.
|
RecordInput
|
Emits randomized records.
|
Recv
<T extends
TType
>
|
Receives the named tensor from another XLA computation.
|
RecvTPUEmbeddingActivations
|
An op that receives embedding activations on the TPU.
|
Reduce
<T extends
TNumber
>
|
Mutually reduces multiple tensors of identical type and shape.
|
ReduceAll
|
Computes the "logical and" of elements across dimensions of a tensor.
|
ReduceAny
|
Computes the "logical or" of elements across dimensions of a tensor.
|
ReduceJoin
|
Joins a string Tensor across the given dimensions.
|
ReduceMax
<T extends
TType
>
|
Computes the maximum of elements across dimensions of a tensor.
|
ReduceMin
<T extends
TType
>
|
Computes the minimum of elements across dimensions of a tensor.
|
ReduceProd
<T extends
TType
>
|
Computes the product of elements across dimensions of a tensor.
|
ReduceSum
<T extends
TType
>
|
Computes the sum of elements across dimensions of a tensor.
|
ReduceV2
<T extends
TNumber
>
|
Mutually reduces multiple tensors of identical type and shape.
|
RefEnter
<T extends
TType
>
|
Creates or finds a child frame, and makes `data` available to the child frame.
|
RefExit
<T extends
TType
>
|
Exits the current frame to its parent frame.
|
RefIdentity
<T extends
TType
>
|
Return the same ref tensor as the input ref tensor.
|
RefMerge
<T extends
TType
>
|
Forwards the value of an available tensor from `inputs` to `output`.
|
RefNextIteration
<T extends
TType
>
|
Makes its input available to the next iteration.
|
RefSelect
<T extends
TType
>
|
Forwards the `index`th element of `inputs` to `output`.
|
RefSwitch
<T extends
TType
>
|
Forwards the ref tensor `data` to the output port determined by `pred`.
|
RegexFullMatch
|
Check if the input matches the regex pattern.
|
RegexReplace
|
Replaces matches of the `pattern` regular expression in `input` with the
replacement string provided in `rewrite`.
|
RegisterDataset
|
Registers a dataset with the tf.data service.
|
Relu
<T extends
TType
>
|
Computes rectified linear: `max(features, 0)`.
|
Relu6
<T extends
TNumber
>
|
Computes rectified linear 6: `min(max(features, 0), 6)`.
|
Relu6Grad
<T extends
TNumber
>
|
Computes rectified linear 6 gradients for a Relu6 operation.
|
ReluGrad
<T extends
TNumber
>
|
Computes rectified linear gradients for a Relu operation.
|
RemoteFusedGraphExecute
|
Execute a sub graph on a remote processor.
|
RepeatDataset
|
Creates a dataset that emits the outputs of `input_dataset` `count` times.
|
ReplicaId
|
Replica ID.
|
ReplicateMetadata
|
Metadata indicating how the TPU computation should be replicated.
|
ReplicatedInput
<T extends
TType
>
|
Connects N inputs to an N-way replicated TPU computation.
|
ReplicatedOutput
<T extends
TType
>
|
Connects N outputs from an N-way replicated TPU computation.
|
RequantizationRange
|
Computes a range that covers the actual values present in a quantized tensor.
|
RequantizationRangePerChannel
|
Computes requantization range per channel.
|
Requantize
<U extends
TType
>
|
Converts the quantized `input` tensor into a lower-precision `output`.
|
RequantizePerChannel
<U extends
TType
>
|
Requantizes input with min and max values known per channel.
|
Reshape
<T extends
TType
>
|
Reshapes a tensor.
|
ResizeArea
|
Resize `images` to `size` using area interpolation.
|
ResizeBicubic
|
Resize `images` to `size` using bicubic interpolation.
|
ResizeBicubicGrad
<T extends
TNumber
>
|
Computes the gradient of bicubic interpolation.
|
ResizeBilinear
|
Resize `images` to `size` using bilinear interpolation.
|
ResizeBilinearGrad
<T extends
TNumber
>
|
Computes the gradient of bilinear interpolation.
|
ResizeNearestNeighbor
<T extends
TNumber
>
|
Resize `images` to `size` using nearest neighbor interpolation.
|
ResizeNearestNeighborGrad
<T extends
TNumber
>
|
Computes the gradient of nearest neighbor interpolation.
|
ResourceAccumulatorApplyGradient
|
Applies a gradient to a given accumulator.
|
ResourceAccumulatorNumAccumulated
|
Returns the number of gradients aggregated in the given accumulators.
|
ResourceAccumulatorSetGlobalStep
|
Updates the accumulator with a new value for global_step.
|
ResourceAccumulatorTakeGradient
<T extends
TType
>
|
Extracts the average gradient in the given ConditionalAccumulator.
|
ResourceApplyAdaMax
|
Update '*var' according to the AdaMax algorithm.
|
ResourceApplyAdadelta
|
Update '*var' according to the adadelta scheme.
|
ResourceApplyAdagrad
|
Update '*var' according to the adagrad scheme.
|
ResourceApplyAdagradDa
|
Update '*var' according to the proximal adagrad scheme.
|
ResourceApplyAdam
|
Update '*var' according to the Adam algorithm.
|
ResourceApplyAdamWithAmsgrad
|
Update '*var' according to the Adam algorithm.
|
ResourceApplyAddSign
|
Update '*var' according to the AddSign update.
|
ResourceApplyCenteredRmsProp
|
Update '*var' according to the centered RMSProp algorithm.
|
ResourceApplyFtrl
|
Update '*var' according to the Ftrl-proximal scheme.
|
ResourceApplyGradientDescent
|
Update '*var' by subtracting 'alpha' * 'delta' from it.
|
ResourceApplyKerasMomentum
|
Update '*var' according to the momentum scheme.
|
ResourceApplyMomentum
|
Update '*var' according to the momentum scheme.
|
ResourceApplyPowerSign
|
Update '*var' according to the AddSign update.
|
ResourceApplyProximalAdagrad
|
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
|
ResourceApplyProximalGradientDescent
|
Update '*var' as FOBOS algorithm with fixed learning rate.
|
ResourceApplyRmsProp
|
Update '*var' according to the RMSProp algorithm.
|
ResourceConditionalAccumulator
|
A conditional accumulator for aggregating gradients.
|
ResourceCountUpTo
<T extends
TNumber
>
|
Increments variable pointed to by 'resource' until it reaches 'limit'.
|
ResourceGather
<U extends
TType
>
|
Gather slices from the variable pointed to by `resource` according to `indices`.
|
ResourceGatherNd
<U extends
TType
>
|
|
ResourceScatterAdd
|
Adds sparse updates to the variable referenced by `resource`.
|
ResourceScatterDiv
|
Divides sparse updates into the variable referenced by `resource`.
|
ResourceScatterMax
|
Reduces sparse updates into the variable referenced by `resource` using the `max` operation.
|
ResourceScatterMin
|
Reduces sparse updates into the variable referenced by `resource` using the `min` operation.
|
ResourceScatterMul
|
Multiplies sparse updates into the variable referenced by `resource`.
|
ResourceScatterNdAdd
|
Applies sparse addition to individual values or slices in a Variable.
|
ResourceScatterNdMax
|
|
ResourceScatterNdMin
|
|
ResourceScatterNdSub
|
Applies sparse subtraction to individual values or slices in a Variable.
|
ResourceScatterNdUpdate
|
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`.
|
ResourceScatterSub
|
Subtracts sparse updates from the variable referenced by `resource`.
|
ResourceScatterUpdate
|
Assigns sparse updates to the variable referenced by `resource`.
|
ResourceSparseApplyAdadelta
|
var: Should be from a Variable().
|
ResourceSparseApplyAdagrad
|
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
ResourceSparseApplyAdagradDa
|
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
|
ResourceSparseApplyAdagradV2
|
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
ResourceSparseApplyCenteredRmsProp
|
Update '*var' according to the centered RMSProp algorithm.
|
ResourceSparseApplyFtrl
|
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
ResourceSparseApplyKerasMomentum
|
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
ResourceSparseApplyMomentum
|
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
ResourceSparseApplyProximalAdagrad
|
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
|
ResourceSparseApplyProximalGradientDescent
|
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
ResourceSparseApplyRmsProp
|
Update '*var' according to the RMSProp algorithm.
|
ResourceStridedSliceAssign
|
Assign `value` to the sliced l-value reference of `ref`.
|
Restore
|
Restores tensors from a V2 checkpoint.
|
RestoreSlice
<T extends
TType
>
|
Restores a tensor from checkpoint files.
|
RetrieveTPUEmbeddingADAMParameters
|
Retrieve ADAM embedding parameters.
|
RetrieveTPUEmbeddingADAMParametersGradAccumDebug
|
Retrieve ADAM embedding parameters with debug support.
|
RetrieveTPUEmbeddingAdadeltaParameters
|
Retrieve Adadelta embedding parameters.
|
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug
|
Retrieve Adadelta embedding parameters with debug support.
|
RetrieveTPUEmbeddingAdagradParameters
|
Retrieve Adagrad embedding parameters.
|
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug
|
Retrieve Adagrad embedding parameters with debug support.
|
RetrieveTPUEmbeddingCenteredRMSPropParameters
|
Retrieve centered RMSProp embedding parameters.
|
RetrieveTPUEmbeddingFTRLParameters
|
Retrieve FTRL embedding parameters.
|
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug
|
Retrieve FTRL embedding parameters with debug support.
|
RetrieveTPUEmbeddingMDLAdagradLightParameters
|
Retrieve MDL Adagrad Light embedding parameters.
|
RetrieveTPUEmbeddingMomentumParameters
|
Retrieve Momentum embedding parameters.
|
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug
|
Retrieve Momentum embedding parameters with debug support.
|
RetrieveTPUEmbeddingProximalAdagradParameters
|
Retrieve proximal Adagrad embedding parameters.
|
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug
|
Retrieve proximal Adagrad embedding parameters with debug support.
|
RetrieveTPUEmbeddingProximalYogiParameters
|
|
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug
|
|
RetrieveTPUEmbeddingRMSPropParameters
|
Retrieve RMSProp embedding parameters.
|
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug
|
Retrieve RMSProp embedding parameters with debug support.
|
RetrieveTPUEmbeddingStochasticGradientDescentParameters
|
Retrieve SGD embedding parameters.
|
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
|
Retrieve SGD embedding parameters with debug support.
|
Reverse
<T extends
TType
>
|
Reverses specific dimensions of a tensor.
|
ReverseSequence
<T extends
TType
>
|
Reverses variable length slices.
|
Rfft
<U extends
TType
>
|
Real-valued fast Fourier transform.
|
Rfft2d
<U extends
TType
>
|
2D real-valued fast Fourier transform.
|
Rfft3d
<U extends
TType
>
|
3D real-valued fast Fourier transform.
|
RgbToHsv
<T extends
TNumber
>
|
Converts one or more images from RGB to HSV.
|
RightShift
<T extends
TNumber
>
|
Elementwise computes the bitwise right-shift of `x` and `y`.
|
Rint
<T extends
TNumber
>
|
Returns element-wise integer closest to x.
|
RngReadAndSkip
|
Advance the counter of a counter-based RNG.
|
RngSkip
|
Advance the counter of a counter-based RNG.
|
Roll
<T extends
TType
>
|
Rolls the elements of a tensor along an axis.
|
Round
<T extends
TType
>
|
Rounds the values of a tensor to the nearest integer, element-wise.
|
Rpc
|
Perform batches of RPC requests.
|
Rsqrt
<T extends
TType
>
|
Computes reciprocal of square root of x element-wise.
|
RsqrtGrad
<T extends
TType
>
|
Computes the gradient for the rsqrt of `x` wrt its input.
|
SampleDistortedBoundingBox
<T extends
TNumber
>
|
Generate a single randomly distorted bounding box for an image.
|
SamplingDataset
|
Creates a dataset that takes a Bernoulli sample of the contents of another dataset.
|
Save
|
Saves tensors in V2 checkpoint format.
|
SaveSlices
|
Saves input tensors slices to disk.
|
ScalarSummary
|
Outputs a `Summary` protocol buffer with scalar values.
|
ScaleAndTranslate
|
|
ScaleAndTranslateGrad
<T extends
TNumber
>
|
|
ScatterAdd
<T extends
TType
>
|
Adds sparse updates to a variable reference.
|
ScatterDiv
<T extends
TType
>
|
Divides a variable reference by sparse updates.
|
ScatterMax
<T extends
TNumber
>
|
Reduces sparse updates into a variable reference using the `max` operation.
|
ScatterMin
<T extends
TNumber
>
|
Reduces sparse updates into a variable reference using the `min` operation.
|
ScatterMul
<T extends
TType
>
|
Multiplies sparse updates into a variable reference.
|
ScatterNd
<U extends
TType
>
|
Scatter `updates` into a new tensor according to `indices`.
|
ScatterNdAdd
<T extends
TType
>
|
Applies sparse addition to individual values or slices in a Variable.
|
ScatterNdMax
<T extends
TType
>
|
Computes element-wise maximum.
|
ScatterNdMin
<T extends
TType
>
|
Computes element-wise minimum.
|
ScatterNdNonAliasingAdd
<T extends
TType
>
|
Applies sparse addition to `input` using individual values or slices
from `updates` according to indices `indices`.
|
ScatterNdSub
<T extends
TType
>
|
Applies sparse subtraction to individual values or slices in a Variable.
|
ScatterNdUpdate
<T extends
TType
>
|
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`.
|
ScatterSub
<T extends
TType
>
|
Subtracts sparse updates to a variable reference.
|
ScatterUpdate
<T extends
TType
>
|
Applies sparse updates to a variable reference.
|
SdcaFprint
|
Computes fingerprints of the input strings.
|
SdcaOptimizer
|
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization.
|
SdcaShrinkL1
|
Applies L1 regularization shrink step on the parameters.
|
SegmentMax
<T extends
TNumber
>
|
Computes the maximum along segments of a tensor.
|
SegmentMean
<T extends
TType
>
|
Computes the mean along segments of a tensor.
|
SegmentMin
<T extends
TNumber
>
|
Computes the minimum along segments of a tensor.
|
SegmentProd
<T extends
TType
>
|
Computes the product along segments of a tensor.
|
SegmentSum
<T extends
TType
>
|
Computes the sum along segments of a tensor.
|
Select
<T extends
TType
>
|
|
SelfAdjointEig
<T extends
TType
>
|
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported).
|
Selu
<T extends
TNumber
>
|
Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`
if < 0, `scale * features` otherwise.
|
SeluGrad
<T extends
TNumber
>
|
Computes gradients for the scaled exponential linear (Selu) operation.
|
Send
|
Sends the named tensor to another XLA computation.
|
SendTPUEmbeddingGradients
|
Performs gradient updates of embedding tables.
|
SerializeIterator
|
Converts the given `resource_handle` representing an iterator to a variant tensor.
|
SerializeManySparse
<U extends
TType
>
|
Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object.
|
SerializeSparse
<U extends
TType
>
|
Serialize a `SparseTensor` into a `[3]` `Tensor` object.
|
SerializeTensor
|
Transforms a Tensor into a serialized TensorProto proto.
|
SetDiff1d
<T extends
TType
, U extends
TNumber
>
|
Computes the difference between two lists of numbers or strings.
|
SetSize
|
Number of unique elements along last dimension of input `set`.
|
SetStatsAggregatorDataset
|
|
Shape
<U extends
TNumber
>
|
Returns the shape of a tensor.
|
ShapeN
<U extends
TNumber
>
|
Returns shape of tensors.
|
ShardDataset
|
Creates a `Dataset` that includes only 1/`num_shards` of this dataset.
|
ShardedFilename
|
Generate a sharded filename.
|
ShardedFilespec
|
Generate a glob pattern matching all sharded file names.
|
Sharding
<T extends
TType
>
|
An op which shards the input based on the given sharding attribute.
|
ShuffleAndRepeatDataset
|
|
ShuffleDataset
|
|
ShutdownDistributedTPU
|
Shuts down a running distributed TPU system.
|
Sigmoid
<T extends
TType
>
|
Computes sigmoid of `x` element-wise.
|
SigmoidGrad
<T extends
TType
>
|
Computes the gradient of the sigmoid of `x` wrt its input.
|
Sign
<T extends
TType
>
|
Returns an element-wise indication of the sign of a number.
|
Sin
<T extends
TType
>
|
Computes sine of x element-wise.
|
Sinh
<T extends
TType
>
|
Computes hyperbolic sine of x element-wise.
|
Size
<U extends
TNumber
>
|
Returns the size of a tensor.
|
SkipDataset
|
Creates a dataset that skips `count` elements from the `input_dataset`.
|
Skipgram
|
Parses a text file and creates a batch of examples.
|
SleepDataset
|
|
Slice
<T extends
TType
>
|
Return a slice from 'input'.
|
SlidingWindowDataset
|
Creates a dataset that passes a sliding window over `input_dataset`.
|
Snapshot
<T extends
TType
>
|
Returns a copy of the input tensor.
|
SobolSample
<T extends
TNumber
>
|
Generates points from the Sobol sequence.
|
Softmax
<T extends
TNumber
>
|
Computes softmax activations.
|
SoftmaxCrossEntropyWithLogits
<T extends
TNumber
>
|
Computes softmax cross entropy cost and gradients to backpropagate.
|
Softplus
<T extends
TNumber
>
|
Computes softplus: `log(exp(features) + 1)`.
|
SoftplusGrad
<T extends
TNumber
>
|
Computes softplus gradients for a softplus operation.
|
Softsign
<T extends
TNumber
>
|
Computes softsign: `features / (abs(features) + 1)`.
|
SoftsignGrad
<T extends
TNumber
>
|
Computes softsign gradients for a softsign operation.
|
Solve
<T extends
TType
>
|
Solves systems of linear equations.
|
Sort
<T extends
TType
>
|
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
.
|
SpaceToBatch
<T extends
TType
>
|
SpaceToBatch for 4-D tensors of type T.
|
SpaceToBatchNd
<T extends
TType
>
|
SpaceToBatch for N-D tensors of type T.
|
SpaceToDepth
<T extends
TType
>
|
SpaceToDepth for tensors of type T.
|
SparseAccumulatorApplyGradient
|
Applies a sparse gradient to a given accumulator.
|
SparseAccumulatorTakeGradient
<T extends
TType
>
|
Extracts the average sparse gradient in a SparseConditionalAccumulator.
|
SparseAdd
<T extends
TType
>
|
Adds two `SparseTensor` objects to produce another `SparseTensor`.
|
SparseAddGrad
<T extends
TType
>
|
The gradient operator for the SparseAdd op.
|
SparseApplyAdadelta
<T extends
TType
>
|
var: Should be from a Variable().
|
SparseApplyAdagrad
<T extends
TType
>
|
Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
|
SparseApplyAdagradDa
<T extends
TType
>
|
Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
|
SparseApplyCenteredRmsProp
<T extends
TType
>
|
Update '*var' according to the centered RMSProp algorithm.
|
SparseApplyFtrl
<T extends
TType
>
|
Update relevant entries in '*var' according to the Ftrl-proximal scheme.
|
SparseApplyMomentum
<T extends
TType
>
|
Update relevant entries in '*var' and '*accum' according to the momentum scheme.
|
SparseApplyProximalAdagrad
<T extends
TType
>
|
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
|
SparseApplyProximalGradientDescent
<T extends
TType
>
|
Sparse update '*var' as FOBOS algorithm with fixed learning rate.
|
SparseApplyRmsProp
<T extends
TType
>
|
Update '*var' according to the RMSProp algorithm.
|
SparseBincount
<U extends
TNumber
>
|
Counts the number of occurrences of each value in an integer array.
|
SparseConcat
<T extends
TType
>
|
Concatenates a list of `SparseTensor` along the specified dimension.
|
SparseConditionalAccumulator
|
A conditional accumulator for aggregating sparse gradients.
|
SparseCountSparseOutput
<U extends
TNumber
>
|
Performs sparse-output bin counting for a sparse tensor input.
|
SparseCross
|
Generates sparse cross from a list of sparse and dense tensors.
|
SparseCrossHashed
|
Generates sparse cross from a list of sparse and dense tensors.
|
SparseDenseCwiseAdd
<T extends
TType
>
|
Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition.
|
SparseDenseCwiseDiv
<T extends
TType
>
|
Component-wise divides a SparseTensor by a dense Tensor.
|
SparseDenseCwiseMul
<T extends
TType
>
|
Component-wise multiplies a SparseTensor by a dense Tensor.
|
SparseFillEmptyRows
<T extends
TType
>
|
Fills empty rows in the input 2-D `SparseTensor` with a default value.
|
SparseFillEmptyRowsGrad
<T extends
TType
>
|
The gradient of SparseFillEmptyRows.
|
SparseMatMul
|
Multiply matrix "a" by matrix "b".
|
SparseMatrixAdd
|
Sparse addition of two CSR matrices, C = alpha * A + beta * B.
|
SparseMatrixMatMul
<T extends
TType
>
|
Matrix-multiplies a sparse matrix with a dense matrix.
|
SparseMatrixMul
|
Element-wise multiplication of a sparse matrix with a dense tensor.
|
SparseMatrixNNZ
|
Returns the number of nonzeroes of `sparse_matrix`.
|
SparseMatrixOrderingAMD
|
Computes the Approximate Minimum Degree (AMD) ordering of `input`.
|
SparseMatrixSoftmax
|
Calculates the softmax of a CSRSparseMatrix.
|
SparseMatrixSoftmaxGrad
|
Calculates the gradient of the SparseMatrixSoftmax op.
|
SparseMatrixSparseCholesky
|
Computes the sparse Cholesky decomposition of `input`.
|
SparseMatrixSparseMatMul
|
Sparse-matrix-multiplies two CSR matrices `a` and `b`.
|
SparseMatrixTranspose
|
Transposes the inner (matrix) dimensions of a CSRSparseMatrix.
|
SparseMatrixZeros
|
Creates an all-zeros CSRSparseMatrix with shape `dense_shape`.
|
SparseReduceMax
<T extends
TNumber
>
|
Computes the max of elements across dimensions of a SparseTensor.
|
SparseReduceMaxSparse
<T extends
TNumber
>
|
Computes the max of elements across dimensions of a SparseTensor.
|
SparseReduceSum
<T extends
TType
>
|
Computes the sum of elements across dimensions of a SparseTensor.
|
SparseReduceSumSparse
<T extends
TType
>
|
Computes the sum of elements across dimensions of a SparseTensor.
|
SparseReorder
<T extends
TType
>
|
Reorders a SparseTensor into the canonical, row-major ordering.
|
SparseReshape
|
Reshapes a SparseTensor to represent values in a new dense shape.
|
SparseSegmentMean
<T extends
TNumber
>
|
Computes the mean along sparse segments of a tensor.
|
SparseSegmentMeanGrad
<T extends
TNumber
>
|
Computes gradients for SparseSegmentMean.
|
SparseSegmentMeanWithNumSegments
<T extends
TNumber
>
|
Computes the mean along sparse segments of a tensor.
|
SparseSegmentSqrtN
<T extends
TNumber
>
|
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
|
SparseSegmentSqrtNGrad
<T extends
TNumber
>
|
Computes gradients for SparseSegmentSqrtN.
|
SparseSegmentSqrtNWithNumSegments
<T extends
TNumber
>
|
Computes the sum along sparse segments of a tensor divided by the sqrt of N.
|
SparseSegmentSum
<T extends
TNumber
>
|
Computes the sum along sparse segments of a tensor.
|
SparseSegmentSumWithNumSegments
<T extends
TNumber
>
|
Computes the sum along sparse segments of a tensor.
|
SparseSlice
<T extends
TType
>
|
Slice a `SparseTensor` based on the `start` and `size`.
|
SparseSliceGrad
<T extends
TType
>
|
The gradient operator for the SparseSlice op.
|
SparseSoftmax
<T extends
TNumber
>
|
Applies softmax to a batched N-D `SparseTensor`.
|
SparseSoftmaxCrossEntropyWithLogits
<T extends
TNumber
>
|
Computes softmax cross entropy cost and gradients to backpropagate.
|
SparseSparseMaximum
<T extends
TNumber
>
|
Returns the element-wise max of two SparseTensors.
|
SparseSparseMinimum
<T extends
TType
>
|
Returns the element-wise min of two SparseTensors.
|
SparseSplit
<T extends
TType
>
|
Split a `SparseTensor` into `num_split` tensors along one dimension.
|
SparseTensorDenseAdd
<U extends
TType
>
|
Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`.
|
SparseTensorDenseMatMul
<U extends
TType
>
|
Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
|
SparseTensorSliceDataset
|
Creates a dataset that splits a SparseTensor into elements row-wise.
|
SparseTensorToCSRSparseMatrix
|
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix.
|
SparseToDense
<U extends
TType
>
|
Converts a sparse representation into a dense tensor.
|
SparseToSparseSetOperation
<T extends
TType
>
|
Applies set operation along last dimension of 2 `SparseTensor` inputs.
|
Spence
<T extends
TNumber
>
|
|
Split
<T extends
TType
>
|
Splits a tensor into `num_split` tensors along one dimension.
|
SplitV
<T extends
TType
>
|
Splits a tensor into `num_split` tensors along one dimension.
|
SqlDataset
|
Creates a dataset that executes a SQL query and emits rows of the result set.
|
Sqrt
<T extends
TType
>
|
Computes square root of x element-wise.
|
SqrtGrad
<T extends
TType
>
|
Computes the gradient for the sqrt of `x` wrt its input.
|
Sqrtm
<T extends
TType
>
|
Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A
The input matrix should be invertible.
|
Square
<T extends
TType
>
|
Computes square of x element-wise.
|
SquaredDifference
<T extends
TType
>
|
Returns conj(x - y)(x - y) element-wise.
|
Squeeze
<T extends
TType
>
|
Removes dimensions of size 1 from the shape of a tensor.
|
Stack
<T extends
TType
>
|
Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor.
|
Stage
|
Stage values similar to a lightweight Enqueue.
|
StageClear
|
Op removes all elements in the underlying container.
|
StagePeek
|
Op peeks at the values at the specified index.
|
StageSize
|
Op returns the number of elements in the underlying container.
|
StatefulRandomBinomial
<V extends
TNumber
>
|
|
StatefulStandardNormal
<U extends
TType
>
|
Outputs random values from a normal distribution.
|
StatefulTruncatedNormal
<U extends
TType
>
|
Outputs random values from a truncated normal distribution.
|
StatefulUniform
<U extends
TType
>
|
Outputs random values from a uniform distribution.
|
StatefulUniformFullInt
<U extends
TType
>
|
Outputs random integers from a uniform distribution.
|
StatefulUniformInt
<U extends
TType
>
|
Outputs random integers from a uniform distribution.
|
StatelessMultinomial
<V extends
TNumber
>
|
Draws samples from a multinomial distribution.
|
StatelessParameterizedTruncatedNormal
<V extends
TNumber
>
|
|
StatelessRandomBinomial
<W extends
TNumber
>
|
Outputs deterministic pseudorandom random numbers from a binomial distribution.
|
StatelessRandomGamma
<V extends
TNumber
>
|
Outputs deterministic pseudorandom random numbers from a gamma distribution.
|
StatelessRandomGetKeyCounterAlg
|
Picks the best algorithm based on device, and scrambles seed into key and counter.
|
StatelessRandomNormal
<V extends
TNumber
>
|
Outputs deterministic pseudorandom values from a normal distribution.
|
StatelessRandomNormalV2
<U extends
TNumber
>
|
Outputs deterministic pseudorandom values from a normal distribution.
|
StatelessRandomPoisson
<W extends
TNumber
>
|
Outputs deterministic pseudorandom random numbers from a Poisson distribution.
|
StatelessRandomUniform
<V extends
TNumber
>
|
Outputs deterministic pseudorandom random values from a uniform distribution.
|
StatelessRandomUniformFullInt
<V extends
TNumber
>
|
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformFullIntV2
<U extends
TNumber
>
|
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformInt
<V extends
TNumber
>
|
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformIntV2
<U extends
TNumber
>
|
Outputs deterministic pseudorandom random integers from a uniform distribution.
|
StatelessRandomUniformV2
<U extends
TNumber
>
|
Outputs deterministic pseudorandom random values from a uniform distribution.
|
StatelessSampleDistortedBoundingBox
<T extends
TNumber
>
|
Generate a randomly distorted bounding box for an image deterministically.
|
StatelessTruncatedNormal
<V extends
TNumber
>
|
Outputs deterministic pseudorandom values from a truncated normal distribution.
|
StatelessTruncatedNormalV2
<U extends
TNumber
>
|
Outputs deterministic pseudorandom values from a truncated normal distribution.
|
StaticRegexFullMatch
|
Check if the input matches the regex pattern.
|
StaticRegexReplace
|
Replaces the match of pattern in input with rewrite.
|
StatsAggregatorHandle
|
|
StatsAggregatorSetSummaryWriter
|
Set a summary_writer_interface to record statistics using given stats_aggregator.
|
StatsAggregatorSummary
|
Produces a summary of any statistics recorded by the given statistics manager.
|
StopGradient
<T extends
TType
>
|
Stops gradient computation.
|
StridedSlice
<T extends
TType
>
|
Return a strided slice from `input`.
|
StridedSliceAssign
<T extends
TType
>
|
Assign `value` to the sliced l-value reference of `ref`.
|
StridedSliceGrad
<U extends
TType
>
|
Returns the gradient of `StridedSlice`.
|
StringFormat
|
Formats a string template using a list of tensors.
|
StringLength
|
String lengths of `input`.
|
StringNGrams
<T extends
TNumber
>
|
Creates ngrams from ragged string data.
|
StringSplit
|
Split elements of `source` based on `sep` into a `SparseTensor`.
|
Strip
|
Strip leading and trailing whitespaces from the Tensor.
|
Sub
<T extends
TType
>
|
Returns x - y element-wise.
|
Substr
|
Return substrings from `Tensor` of strings.
|
Sum
<T extends
TType
>
|
Computes the sum of elements across dimensions of a tensor.
|
SummaryWriter
|
|
Svd
<T extends
TType
>
|
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported).
|
SwitchCond
<T extends
TType
>
|
Forwards `data` to the output port determined by `pred`.
|
TPUCompilationResult
|
Returns the result of a TPU compilation.
|
TPUEmbeddingActivations
|
An op enabling differentiation of TPU Embeddings.
|
TPUReplicateMetadata
|
Metadata indicating how the TPU computation should be replicated.
|
TPUReplicatedInput
<T extends
TType
>
|
Connects N inputs to an N-way replicated TPU computation.
|
TPUReplicatedOutput
<T extends
TType
>
|
Connects N outputs from an N-way replicated TPU computation.
|
TakeDataset
|
Creates a dataset that contains `count` elements from the `input_dataset`.
|
TakeManySparseFromTensorsMap
<T extends
TType
>
|
Read `SparseTensors` from a `SparseTensorsMap` and concatenate them.
|
Tan
<T extends
TType
>
|
Computes tan of x element-wise.
|
Tanh
<T extends
TType
>
|
Computes hyperbolic tangent of `x` element-wise.
|
TanhGrad
<T extends
TType
>
|
Computes the gradient for the tanh of `x` wrt its input.
|
TemporaryVariable
<T extends
TType
>
|
Returns a tensor that may be mutated, but only persists within a single step.
|
TensorArray
|
An array of Tensors of given size.
|
TensorArrayClose
|
Delete the TensorArray from its resource container.
|
TensorArrayConcat
<T extends
TType
>
|
Concat the elements from the TensorArray into value `value`.
|
TensorArrayGather
<T extends
TType
>
|
Gather specific elements from the TensorArray into output `value`.
|
TensorArrayGrad
|
Creates a TensorArray for storing the gradients of values in the given handle.
|
TensorArrayGradWithShape
|
Creates a TensorArray for storing multiple gradients of values in the given handle.
|
TensorArrayPack
<T extends
TType
>
|
|
TensorArrayRead
<T extends
TType
>
|
Read an element from the TensorArray into output `value`.
|
TensorArrayScatter
|
Scatter the data from the input value into specific TensorArray elements.
|
TensorArraySize
|
Get the current size of the TensorArray.
|
TensorArraySplit
|
Split the data from the input value into TensorArray elements.
|
TensorArrayUnpack
|
|
TensorArrayWrite
|
Push an element onto the tensor_array.
|
TensorDataset
|
Creates a dataset that emits `components` as a tuple of tensors once.
|
TensorDiag
<T extends
TType
>
|
Returns a diagonal tensor with a given diagonal values.
|
TensorDiagPart
<T extends
TType
>
|
Returns the diagonal part of the tensor.
|
TensorForestCreateTreeVariable
|
Creates a tree resource and returns a handle to it.
|
TensorForestTreeDeserialize
|
Deserializes a proto into the tree handle
|
TensorForestTreeIsInitializedOp
|
Checks whether a tree has been initialized.
|
TensorForestTreePredict
|
Output the logits for the given input data
|
TensorForestTreeResourceHandleOp
|
Creates a handle to a TensorForestTreeResource
|
TensorForestTreeSerialize
|
Serializes the tree handle to a proto
|
TensorForestTreeSize
|
Get the number of nodes in a tree
|
TensorListConcat
<U extends
TType
>
|
Concats all tensors in the list along the 0th dimension.
|
TensorListConcatLists
|
|
TensorListElementShape
<T extends
TNumber
>
|
The shape of the elements of the given list, as a tensor.
|
TensorListFromTensor
|
Creates a TensorList which, when stacked, has the value of `tensor`.
|
TensorListGather
<T extends
TType
>
|
Creates a Tensor by indexing into the TensorList.
|
TensorListGetItem
<T extends
TType
>
|
|
TensorListLength
|
Returns the number of tensors in the input tensor list.
|
TensorListPopBack
<T extends
TType
>
|
Returns the last element of the input list as well as a list with all but that element.
|
TensorListPushBack
|
Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`.
|
TensorListPushBackBatch
|
|
TensorListReserve
|
List of the given size with empty elements.
|
TensorListResize
|
Resizes the list.
|
TensorListScatter
|
Creates a TensorList by indexing into a Tensor.
|
TensorListScatterIntoExistingList
|
Scatters tensor at indices in an input list.
|
TensorListSetItem
|
|
TensorListSplit
|
Splits a tensor into a list.
|
TensorListStack
<T extends
TType
>
|
Stacks all tensors in the list.
|
TensorMapErase
|
Returns a tensor map with item from given key erased.
|
TensorMapHasKey
|
Returns whether the given key exists in the map.
|
TensorMapInsert
|
Returns a map that is the 'input_handle' with the given key-value pair inserted.
|
TensorMapLookup
<U extends
TType
>
|
Returns the value from a given key in a tensor map.
|
TensorMapSize
|
Returns the number of tensors in the input tensor map.
|
TensorMapStackKeys
<T extends
TType
>
|
Returns a Tensor stack of all keys in a tensor map.
|
TensorScatterNdAdd
<T extends
TType
>
|
Adds sparse `updates` to an existing tensor according to `indices`.
|
TensorScatterNdMax
<T extends
TType
>
|
|
TensorScatterNdMin
<T extends
TType
>
|
|
TensorScatterNdSub
<T extends
TType
>
|
Subtracts sparse `updates` from an existing tensor according to `indices`.
|
TensorScatterNdUpdate
<T extends
TType
>
|
Scatter `updates` into an existing tensor according to `indices`.
|
TensorSliceDataset
|
Creates a dataset that emits each dim-0 slice of `components` once.
|
TensorStridedSliceUpdate
<T extends
TType
>
|
Assign `value` to the sliced l-value reference of `input`.
|
TensorSummary
|
Outputs a `Summary` protocol buffer with a tensor and per-plugin data.
|
TextLineDataset
|
Creates a dataset that emits the lines of one or more text files.
|
TextLineReader
|
A Reader that outputs the lines of a file delimited by '\n'.
|
TfRecordDataset
|
Creates a dataset that emits the records from one or more TFRecord files.
|
TfRecordReader
|
A Reader that outputs the records from a TensorFlow Records file.
|
ThreadPoolDataset
|
Creates a dataset that uses a custom thread pool to compute `input_dataset`.
|
ThreadPoolHandle
|
Creates a dataset that uses a custom thread pool to compute `input_dataset`.
|
Tile
<T extends
TType
>
|
Constructs a tensor by tiling a given tensor.
|
TileGrad
<T extends
TType
>
|
Returns the gradient of `Tile`.
|
Timestamp
|
Provides the time since epoch in seconds.
|
ToBool
|
Converts a tensor to a scalar predicate.
|
ToHashBucket
|
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucketFast
|
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToHashBucketStrong
|
Converts each string in the input Tensor to its hash mod by a number of buckets.
|
ToNumber
<T extends
TNumber
>
|
Converts each string in the input Tensor to the specified numeric type.
|
TopK
<T extends
TNumber
>
|
Finds values and indices of the `k` largest elements for the last dimension.
|
TopKUnique
|
Returns the TopK unique values in the array in sorted order.
|
TopKWithUnique
|
Returns the TopK values in the array in sorted order.
|
Transpose
<T extends
TType
>
|
Shuffle dimensions of x according to a permutation.
|
TriangularSolve
<T extends
TType
>
|
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution.
|
TridiagonalMatMul
<T extends
TType
>
|
Calculate product with tridiagonal matrix.
|
TridiagonalSolve
<T extends
TType
>
|
Solves tridiagonal systems of equations.
|
TruncateDiv
<T extends
TType
>
|
Returns x / y element-wise for integer types.
|
TruncateMod
<T extends
TNumber
>
|
Returns element-wise remainder of division.
|
TruncatedNormal
<U extends
TNumber
>
|
Outputs random values from a truncated normal distribution.
|
TryRpc
|
Perform batches of RPC requests.
|
Unbatch
<T extends
TType
>
|
Reverses the operation of Batch for a single output Tensor.
|
UnbatchDataset
|
A dataset that splits the elements of its input into multiple elements.
|
UnbatchGrad
<T extends
TType
>
|
Gradient of Unbatch.
|
UncompressElement
|
Uncompresses a compressed dataset element.
|
UnicodeDecode
<T extends
TNumber
>
|
Decodes each string in `input` into a sequence of Unicode code points.
|
UnicodeDecodeWithOffsets
<T extends
TNumber
>
|
Decodes each string in `input` into a sequence of Unicode code points.
|
UnicodeEncode
|
Encode a tensor of ints into unicode strings.
|
UnicodeScript
|
Determine the script codes of a given tensor of Unicode integer code points.
|
UnicodeTranscode
|
Transcode the input text from a source encoding to a destination encoding.
|
UniformCandidateSampler
|
Generates labels for candidate sampling with a uniform distribution.
|
Unique
<T extends
TType
, V extends
TNumber
>
|
Finds unique elements along an axis of a tensor.
|
UniqueDataset
|
Creates a dataset that contains the unique elements of `input_dataset`.
|
UniqueWithCounts
<T extends
TType
, V extends
TNumber
>
|
Finds unique elements along an axis of a tensor.
|
UnravelIndex
<T extends
TNumber
>
|
Converts an array of flat indices into a tuple of coordinate arrays.
|
UnsortedSegmentJoin
|
Joins the elements of `inputs` based on `segment_ids`.
|
UnsortedSegmentMax
<T extends
TNumber
>
|
Computes the maximum along segments of a tensor.
|
UnsortedSegmentMin
<T extends
TNumber
>
|
Computes the minimum along segments of a tensor.
|
UnsortedSegmentProd
<T extends
TType
>
|
Computes the product along segments of a tensor.
|
UnsortedSegmentSum
<T extends
TType
>
|
Computes the sum along segments of a tensor.
|
Unstack
<T extends
TType
>
|
Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors.
|
Unstage
|
Op is similar to a lightweight Dequeue.
|
UnwrapDatasetVariant
|
|
Upper
|
Converts all lowercase characters into their respective uppercase replacements.
|
UpperBound
<U extends
TNumber
>
|
Applies upper_bound(sorted_search_values, values) along each row.
|
VarHandleOp
|
Creates a handle to a Variable resource.
|
VarIsInitializedOp
|
Checks whether a resource handle-based variable has been initialized.
|
Variable
<T extends
TType
>
|
Holds state in the form of a tensor that persists across steps.
|
VariableShape
<T extends
TNumber
>
|
Returns the shape of the variable pointed to by `resource`.
|
Where
|
Returns locations of nonzero / true values in a tensor.
|
WholeFileReader
|
A Reader that outputs the entire contents of a file as a value.
|
WindowDataset
|
Combines (nests of) input elements into a dataset of (nests of) windows.
|
WorkerHeartbeat
|
Worker heartbeat op.
|
WrapDatasetVariant
|
|
WriteAudioSummary
|
Writes an audio summary.
|
WriteFile
|
Writes contents to the file at input filename.
|
WriteGraphSummary
|
Writes a graph summary.
|
WriteHistogramSummary
|
Writes a histogram summary.
|
WriteImageSummary
|
Writes an image summary.
|
WriteRawProtoSummary
|
Writes a serialized proto summary.
|
WriteScalarSummary
|
Writes a scalar summary.
|
WriteSummary
|
Writes a tensor summary.
|
Xdivy
<T extends
TType
>
|
Returns 0 if x == 0, and x / y otherwise, elementwise.
|
XlaRecvFromHost
<T extends
TType
>
|
An op to receive a tensor from the host.
|
XlaSendToHost
|
An op to send a tensor to the host.
|
XlaSetBound
|
Set a bound for the given input value as a hint to Xla compiler,
returns the same value.
|
XlaSpmdFullToShardShape
<T extends
TType
>
|
An op used by XLA SPMD partitioner to switch from automatic partitioning to
manual partitioning.
|
XlaSpmdShardToFullShape
<T extends
TType
>
|
An op used by XLA SPMD partitioner to switch from manual partitioning to
automatic partitioning.
|
Xlog1py
<T extends
TType
>
|
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
|
Xlogy
<T extends
TType
>
|
Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
|
ZerosLike
<T extends
TType
>
|
Returns a tensor of zeros with the same shape and type as x.
|
Zeta
<T extends
TNumber
>
|
Compute the Hurwitz zeta function \\(\zeta(x, q)\\).
|
ZipDataset
|
Creates a dataset that zips together `input_datasets`.
|
erfinv
<T extends
TNumber
>
|
|