לְהַפִּיל | Raise a exception to abort the process when called. |
Abs <T extends TNumber > | Computes the absolute value of a tensor. |
AccumulateN <T extends TType > | Returns the element-wise sum of a list of tensors. |
AccumulatorApplyGradient | Applies a gradient to a given accumulator. |
AccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. |
AccumulatorSetGlobalStep | Updates the accumulator with a new value for global_step. |
AccumulatorTakeGradient <T extends TType > | Extracts the average gradient in the given ConditionalAccumulator. |
Acos <T extends TType > | Computes acos of x element-wise. |
Acosh <T extends TType > | Computes inverse hyperbolic cosine of x element-wise. |
Add <T extends TType > | Returns x + y element-wise. |
AddManySparseToTensorsMap | Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. |
AddN <T extends TType > | Add all input tensors element wise. |
AddSparseToTensorsMap | Add a `SparseTensor` to a `SparseTensorsMap` return its handle. |
AdjustContrast <T extends TNumber > | Adjust the contrast of one or more images. |
AdjustHue <T extends TNumber > | Adjust the hue of one or more images. |
AdjustSaturation <T extends TNumber > | Adjust the saturation of one or more images. |
כֹּל | Computes the "logical and" of elements across dimensions of a tensor. |
AllCandidateSampler | Generates labels for candidate sampling with a learned unigram distribution. |
AllReduce <T extends TNumber > | Mutually reduces multiple tensors of identical type and shape. |
AllToAll <T extends TType > | An Op to exchange data across TPU replicas. |
Angle <U extends TNumber > | Returns the argument of a complex number. |
AnonymousIterator | A container for an iterator resource. |
AnonymousMemoryCache | |
AnonymousMultiDeviceIterator | A container for a multi device iterator resource. |
AnonymousRandomSeedGenerator | |
AnonymousSeedGenerator | |
כֹּל | Computes the "logical or" of elements across dimensions of a tensor. |
ApplyAdaMax <T extends TType > | Update '*var' according to the AdaMax algorithm. |
ApplyAdadelta <T extends TType > | Update '*var' according to the adadelta scheme. |
ApplyAdagrad <T extends TType > | Update '*var' according to the adagrad scheme. |
ApplyAdagradDa <T extends TType > | Update '*var' according to the proximal adagrad scheme. |
ApplyAdagradV2 <T extends TType > | Update '*var' according to the adagrad scheme. |
ApplyAdam <T extends TType > | Update '*var' according to the Adam algorithm. |
ApplyAddSign <T extends TType > | Update '*var' according to the AddSign update. |
ApplyCenteredRmsProp <T extends TType > | Update '*var' according to the centered RMSProp algorithm. |
ApplyFtrl <T extends TType > | Update '*var' according to the Ftrl-proximal scheme. |
ApplyGradientDescent <T extends TType > | Update '*var' by subtracting 'alpha' * 'delta' from it. |
ApplyMomentum <T extends TType > | Update '*var' according to the momentum scheme. |
ApplyPowerSign <T extends TType > | Update '*var' according to the AddSign update. |
ApplyProximalAdagrad <T extends TType > | Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
ApplyProximalGradientDescent <T extends TType > | Update '*var' as FOBOS algorithm with fixed learning rate. |
ApplyRmsProp <T extends TType > | Update '*var' according to the RMSProp algorithm. |
ApproximateEqual | Returns the truth value of abs(xy) < tolerance element-wise. |
ArgMax <V extends TNumber > | Returns the index with the largest value across dimensions of a tensor. |
ArgMin <V extends TNumber > | Returns the index with the smallest value across dimensions of a tensor. |
AsString | Converts each entry in the given tensor to strings. |
Asin <T extends TType > | Computes the trignometric inverse sine of x element-wise. |
Asinh <T extends TType > | Computes inverse hyperbolic sine of x element-wise. |
AssertCardinalityDataset | |
AssertNextDataset | |
AssertThat | Asserts that the given condition is true. |
Assign <T extends TType > | Update 'ref' by assigning 'value' to it. |
AssignAdd <T extends TType > | Update 'ref' by adding 'value' to it. |
AssignAddVariableOp | Adds a value to the current value of a variable. |
AssignSub <T extends TType > | Update 'ref' by subtracting 'value' from it. |
AssignSubVariableOp | Subtracts a value from the current value of a variable. |
AssignVariableOp | Assigns a new value to a variable. |
Atan <T extends TType > | Computes the trignometric inverse tangent of x element-wise. |
Atan2 <T extends TNumber > | Computes arctangent of `y/x` element-wise, respecting signs of the arguments. |
Atanh <T extends TType > | Computes inverse hyperbolic tangent of x element-wise. |
AudioSpectrogram | Produces a visualization of audio data over time. |
AudioSummary | Outputs a `Summary` protocol buffer with audio. |
AutoShardDataset | Creates a dataset that shards the input dataset. |
AvgPool <T extends TNumber > | Performs average pooling on the input. |
AvgPool3d <T extends TNumber > | Performs 3D average pooling on the input. |
AvgPool3dGrad <T extends TNumber > | Computes gradients of average pooling function. |
AvgPoolGrad <T extends TNumber > | Computes gradients of the average pooling function. |
BandPart <T extends TType > | Copy a tensor setting everything outside a central band in each innermost matrix to zero. |
BandedTriangularSolve <T extends TType > | |
מַחסוֹם | Defines a barrier that persists across different graph executions. |
BarrierClose | Closes the given barrier. |
BarrierIncompleteSize | Computes the number of incomplete elements in the given barrier. |
BarrierInsertMany | For each key, assigns the respective value to the specified component. |
BarrierReadySize | Computes the number of complete elements in the given barrier. |
BarrierTakeMany | Takes the given number of completed elements from a barrier. |
קְבוּצָה | Batches all input tensors nondeterministically. |
BatchCholesky <T extends TNumber > | |
BatchCholeskyGrad <T extends TNumber > | |
BatchDataset | Creates a dataset that batches `batch_size` elements from `input_dataset`. |
BatchFft | |
BatchFft2d | |
BatchFft3d | |
BatchIfft | |
BatchIfft2d | |
BatchIfft3d | |
BatchMatMul <T extends TType > | Multiplies slices of two tensors in batches. |
BatchMatrixBandPart <T extends TType > | |
BatchMatrixDeterminant <T extends TType > | |
BatchMatrixDiag <T extends TType > | |
BatchMatrixDiagPart <T extends TType > | |
BatchMatrixInverse <T extends TNumber > | |
BatchMatrixSetDiag <T extends TType > | |
BatchMatrixSolve <T extends TNumber > | |
BatchMatrixSolveLs <T extends TNumber > | |
BatchMatrixTriangularSolve <T extends TNumber > | |
BatchNormWithGlobalNormalization <T extends TType > | Batch normalization. |
BatchNormWithGlobalNormalizationGrad <T extends TType > | Gradients for batch normalization. |
BatchSelfAdjointEig <T extends TNumber > | |
BatchSvd <T extends TType > | |
BatchToSpace <T extends TType > | BatchToSpace for 4-D tensors of type T. |
BatchToSpaceNd <T extends TType > | BatchToSpace for ND tensors of type T. |
BesselI0 <T extends TNumber > | |
BesselI0e <T extends TNumber > | |
BesselI1 <T extends TNumber > | |
BesselI1e <T extends TNumber > | |
BesselJ0 <T extends TNumber > | |
BesselJ1 <T extends TNumber > | |
BesselK0 <T extends TNumber > | |
BesselK0e <T extends TNumber > | |
BesselK1 <T extends TNumber > | |
BesselK1e <T extends TNumber > | |
BesselY0 <T extends TNumber > | |
BesselY1 <T extends TNumber > | |
Betainc <T extends TNumber > | Compute the regularized incomplete beta integral \\(I_x(a, b)\\). |
BiasAdd <T extends TType > | Adds `bias` to `value`. |
BiasAddGrad <T extends TType > | The backward operation for "BiasAdd" on the "bias" tensor. |
Bincount <T extends TNumber > | Counts the number of occurrences of each value in an integer array. |
Bitcast <U extends TType > | Bitcasts a tensor from one type to another without copying data. |
BitwiseAnd <T extends TNumber > | Elementwise computes the bitwise AND of `x` and `y`. |
BitwiseOr <T extends TNumber > | Elementwise computes the bitwise OR of `x` and `y`. |
BitwiseXor <T extends TNumber > | Elementwise computes the bitwise XOR of `x` and `y`. |
BlockLSTM <T extends TNumber > | Computes the LSTM cell forward propagation for all the time steps. |
BlockLSTMGrad <T extends TNumber > | Computes the LSTM cell backward propagation for the entire time sequence. |
BoostedTreesAggregateStats | Aggregates the summary of accumulated stats for the batch. |
BoostedTreesBucketize | Bucketize each feature based on bucket boundaries. |
BoostedTreesCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesCalculateBestFeatureSplitV2 | Calculates gains for each feature and returns the best possible split information for each node. |
BoostedTreesCalculateBestGainsPerFeature | Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesCenterBias | Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. |
BoostedTreesCreateEnsemble | Creates a tree ensemble model and returns a handle to it. |
BoostedTreesCreateQuantileStreamResource | Create the Resource for Quantile Streams. |
BoostedTreesDeserializeEnsemble | Deserializes a serialized tree ensemble config and replaces current tree מִכלוֹל. |
BoostedTreesEnsembleResourceHandleOp | Creates a handle to a BoostedTreesEnsembleResource |
BoostedTreesExampleDebugOutputs | Debugging/model interpretability outputs for each example. |
BoostedTreesFlushQuantileSummaries | Flush the quantile summaries from each quantile stream resource. |
BoostedTreesGetEnsembleStates | Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. |
BoostedTreesMakeQuantileSummaries | Makes the summary of quantiles for the batch. |
BoostedTreesMakeStatsSummary | Makes the summary of accumulated stats for the batch. |
BoostedTreesPredict | Runs multiple additive regression ensemble predictors on input instances and computes the logits. |
BoostedTreesQuantileStreamResourceAddSummaries | Add the quantile summaries to each quantile stream resource. |
BoostedTreesQuantileStreamResourceDeserialize | Deserialize bucket boundaries and ready flag into current QuantileAccumulator. |
BoostedTreesQuantileStreamResourceFlush | Flush the summaries for a quantile stream resource. |
BoostedTreesQuantileStreamResourceGetBucketBoundaries | Generate the bucket boundaries for each feature based on accumulated summaries. |
BoostedTreesQuantileStreamResourceHandleOp | Creates a handle to a BoostedTreesQuantileStreamResource. |
BoostedTreesSerializeEnsemble | Serializes the tree ensemble to a proto. |
BoostedTreesSparseAggregateStats | Aggregates the summary of accumulated stats for the batch. |
BoostedTreesSparseCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesTrainingPredict | Runs multiple additive regression ensemble predictors on input instances and computes the update to cached logits. |
BoostedTreesUpdateEnsemble | Updates the tree ensemble by either adding a layer to the last tree being grown or by starting a new tree. |
BoostedTreesUpdateEnsembleV2 | Updates the tree ensemble by adding a layer to the last tree being grown or by starting a new tree. |
BroadcastDynamicShape <T extends TNumber > | Return the shape of s0 op s1 with broadcast. |
BroadcastGradientArgs <T extends TNumber > | Return the reduction indices for computing gradients of s0 op s1 with broadcast. |
BroadcastHelper <T extends TType > | Helper operator for performing XLA-style broadcasts Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules for binary operators. |
BroadcastRecv <T extends TType > | Receives a tensor value broadcast from another device. |
BroadcastSend <T extends TType > | Broadcasts a tensor value to one or more other devices. |
BroadcastTo <T extends TType > | Broadcast an array for a compatible shape. |
Bucketize | Bucketizes 'input' based on 'boundaries'. |
BytesProducedStatsDataset | Records the bytes size of each element of `input_dataset` in a StatsAggregator. |
CSRSparseMatrixComponents <T extends TType > | Reads out the CSR components at batch `index`. |
CSRSparseMatrixToDense <T extends TType > | Convert a (possibly batched) CSRSparseMatrix to dense. |
CSRSparseMatrixToSparseTensor <T extends TType > | Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. |
CSVDataset | |
CSVDatasetV2 | |
CTCLossV2 | Calculates the CTC Loss (log probability) for each batch entry. |
CacheDataset | Creates a dataset that caches elements from `input_dataset`. |
CacheDatasetV2 | |
Cast <U extends TType > | Cast x of type SrcT to y of DstT. |
Ceil <T extends TNumber > | Returns element-wise smallest integer not less than x. |
CheckNumerics <T extends TNumber > | Checks a tensor for NaN, -Inf and +Inf values. |
Cholesky <T extends TType > | Computes the Cholesky decomposition of one or more square matrices. |
CholeskyGrad <T extends TNumber > | Computes the reverse mode backpropagated gradient of the Cholesky algorithm. |
ChooseFastestDataset | |
ClipByValue <T extends TType > | Clips tensor values to a specified min and max. |
CloseSummaryWriter | |
ClusterOutput <T extends TType > | Operator that connects the output of an XLA computation to other consumer graph nodes. |
CollectiveGather <T extends TNumber > | Mutually accumulates multiple tensors of identical type and shape. |
CollectivePermute <T extends TType > | An Op to permute tensors across replicated TPU instances. |
CombinedNonMaxSuppression | Greedily selects a subset of bounding boxes in descending order of score, This operation performs non_max_suppression on the inputs per batch, across all classes. |
CompareAndBitpack | Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. |
CompilationResult | Returns the result of a TPU compilation. |
CompileSucceededAssert | Asserts that compilation succeeded. |
Complex <U extends TType > | Converts two real numbers to a complex number. |
ComplexAbs <U extends TNumber > | Computes the complex absolute value of a tensor. |
CompressElement | Compresses a dataset element. |
ComputeAccidentalHits | Computes the ids of the positions in sampled_candidates that match true_labels. |
ComputeBatchSize | Computes the static batch size of a dataset sans partial batches. |
Concat <T extends TType > | Concatenates tensors along one dimension. |
ConcatenateDataset | Creates a dataset that concatenates `input_dataset` with `another_dataset`. |
ConditionalAccumulator | A conditional accumulator for aggregating gradients. |
ConfigureDistributedTPU | Sets up the centralized structures for a distributed TPU system. |
ConfigureTPUEmbedding | Sets up TPUEmbedding in a distributed TPU system. |
Conj <T extends TType > | Returns the complex conjugate of a complex number. |
ConjugateTranspose <T extends TType > | Shuffle dimensions of x according to a permutation and conjugate the result. |
Constant <T extends TType > | An operator producing a constant value. |
ConsumeMutexLock | This op consumes a lock created by `MutexLock`. |
ControlTrigger | Does nothing. |
Conv <T extends TType > | Wraps the XLA ConvGeneralDilated operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution . |
Conv2d <T extends TNumber > | Computes a 2-D convolution given 4-D `input` and `filter` tensors. |
Conv2dBackpropFilter <T extends TNumber > | Computes the gradients of convolution with respect to the filter. |
Conv2dBackpropInput <T extends TNumber > | Computes the gradients of convolution with respect to the input. |
Conv3d <T extends TNumber > | Computes a 3-D convolution given 5-D `input` and `filter` tensors. |
Conv3dBackpropFilter <T extends TNumber > | Computes the gradients of 3-D convolution with respect to the filter. |
Conv3dBackpropInput <U extends TNumber > | Computes the gradients of 3-D convolution with respect to the input. |
Copy <T extends TType > | Copy a tensor from CPU-to-CPU or GPU-to-GPU. |
CopyHost <T extends TType > | Copy a tensor to host. |
Cos <T extends TType > | Computes cos of x element-wise. |
Cosh <T extends TType > | Computes hyperbolic cosine of x element-wise. |
CountUpTo <T extends TNumber > | Increments 'ref' until it reaches 'limit'. |
CreateSummaryDbWriter | |
CreateSummaryFileWriter | |
CropAndResize | Extracts crops from the input image tensor and resizes them. |
CropAndResizeGradBoxes | Computes the gradient of the crop_and_resize op wrt the input boxes tensor. |
CropAndResizeGradImage <T extends TNumber > | Computes the gradient of the crop_and_resize op wrt the input image tensor. |
Cross <T extends TNumber > | Compute the pairwise cross product. |
CrossReplicaSum <T extends TNumber > | An Op to sum inputs across replicated TPU instances. |
CtcBeamSearchDecoder <T extends TNumber > | Performs beam search decoding on the logits given in input. |
CtcGreedyDecoder <T extends TNumber > | Performs greedy decoding on the logits given in inputs. |
CtcLoss <T extends TNumber > | Calculates the CTC Loss (log probability) for each batch entry. |
CudnnRNN <T extends TNumber > | A RNN backed by cuDNN. |
CudnnRNNBackprop <T extends TNumber > | Backprop step of CudnnRNNV3. |
CudnnRNNCanonicalToParams <T extends TNumber > | Converts CudnnRNN params from canonical form to usable form. |
CudnnRNNParamsToCanonical <T extends TNumber > | Retrieves CudnnRNN params in canonical form. |
CudnnRnnParamsSize <U extends TNumber > | Computes size of weights that can be used by a Cudnn RNN model. |
Cumprod <T extends TType > | Compute the cumulative product of the tensor `x` along `axis`. |
Cumsum <T extends TType > | Compute the cumulative sum of the tensor `x` along `axis`. |
CumulativeLogsumexp <T extends TNumber > | Compute the cumulative product of the tensor `x` along `axis`. |
DataFormatDimMap <T extends TNumber > | Returns the dimension index in the destination data format given the one in the source data format. |
DataFormatVecPermute <T extends TNumber > | Permute input tensor from `src_format` to `dst_format`. |
DataServiceDataset | |
DatasetCardinality | Returns the cardinality of `input_dataset`. |
DatasetFromGraph | Creates a dataset from the given `graph_def`. |
DatasetToGraph | Returns a serialized GraphDef representing `input_dataset`. |
DatasetToSingleElement | Outputs the single element from the given dataset. |
DatasetToTFRecord | Writes the given dataset to the given file using the TFRecord format. |
DatasetToTfRecord | Writes the given dataset to the given file using the TFRecord format. |
Dawsn <T extends TNumber > | |
DebugGradientIdentity <T extends TType > | Identity op for gradient debugging. |
DebugGradientRefIdentity <T extends TType > | Identity op for gradient debugging. |
DebugIdentity <T extends TType > | Debug Identity V2 Op. |
DebugNanCount | Debug NaN Value Counter Op. |
DebugNumericsSummary <U extends TNumber > | Debug Numeric Summary V2 Op. |
DecodeAndCropJpeg | Decode and Crop a JPEG-encoded image to a uint8 tensor. |
DecodeBase64 | Decode web-safe base64-encoded strings. |
DecodeBmp | Decode the first frame of a BMP-encoded image to a uint8 tensor. |
DecodeCompressed | Decompress strings. |
DecodeCsv | Convert CSV records to tensors. |
DecodeGif | Decode the frame(s) of a GIF-encoded image to a uint8 tensor. |
DecodeImage <T extends TNumber > | Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. |
DecodeJpeg | Decode a JPEG-encoded image to a uint8 tensor. |
DecodeJsonExample | Convert JSON-encoded Example records to binary protocol buffer strings. |
DecodePaddedRaw <T extends TNumber > | Reinterpret the bytes of a string as a vector of numbers. |
DecodePng <T extends TNumber > | Decode a PNG-encoded image to a uint8 or uint16 tensor. |
DecodeProto | The op extracts fields from a serialized protocol buffers message into tensors. |
DecodeRaw <T extends TType > | Reinterpret the bytes of a string as a vector of numbers. |
DecodeWav | Decode a 16-bit PCM WAV file to a float tensor. |
DeepCopy <T extends TType > | Makes a copy of `x`. |
DeleteIterator | A container for an iterator resource. |
DeleteMemoryCache | |
DeleteMultiDeviceIterator | A container for an iterator resource. |
DeleteRandomSeedGenerator | |
DeleteSeedGenerator | |
DeleteSessionTensor | Delete the tensor specified by its handle in the session. |
DenseBincount <U extends TNumber > | Counts the number of occurrences of each value in an integer array. |
DenseCountSparseOutput <U extends TNumber > | Performs sparse-output bin counting for a tf.tensor input. |
DenseToCSRSparseMatrix | Converts a dense tensor to a (possibly batched) CSRSparseMatrix. |
DenseToDenseSetOperation <T extends TType > | Applies set operation along last dimension of 2 `Tensor` inputs. |
DenseToSparseBatchDataset | Creates a dataset that batches input elements into a SparseTensor. |
DenseToSparseSetOperation <T extends TType > | Applies set operation along last dimension of `Tensor` and `SparseTensor`. |
DepthToSpace <T extends TType > | DepthToSpace for tensors of type T. |
DepthwiseConv2dNative <T extends TNumber > | Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. |
DepthwiseConv2dNativeBackpropFilter <T extends TNumber > | Computes the gradients of depthwise convolution with respect to the filter. |
DepthwiseConv2dNativeBackpropInput <T extends TNumber > | Computes the gradients of depthwise convolution with respect to the input. |
Dequantize | Takes the packed uint32 input and unpacks the input to uint8 to do Dequantization on device. |
DeserializeIterator | Converts the given variant tensor to an iterator and stores it in the given resource. |
DeserializeManySparse <T extends TType > | Deserialize and concatenate `SparseTensors` from a serialized minibatch. |
DeserializeSparse <U extends TType > | Deserialize `SparseTensor` objects. |
DestroyResourceOp | Deletes the resource specified by the handle. |
DestroyTemporaryVariable <T extends TType > | Destroys the temporary variable and returns its final value. |
Det <T extends TType > | Computes the determinant of one or more square matrices. |
DeviceIndex | Return the index of device the op runs. |
Digamma <T extends TNumber > | Computes Psi, the derivative of Lgamma (the log of the absolute value of `Gamma(x)`), element-wise. |
Dilation2d <T extends TNumber > | Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. |
Dilation2dBackpropFilter <T extends TNumber > | Computes the gradient of morphological 2-D dilation with respect to the filter. |
Dilation2dBackpropInput <T extends TNumber > | Computes the gradient of morphological 2-D dilation with respect to the input. |
DirectedInterleaveDataset | A substitute for `InterleaveDataset` on a fixed list of `N` datasets. |
Div <T extends TType > | Returns x / y element-wise. |
DivNoNan <T extends TType > | Returns 0 if the denominator is zero. |
Dot <T extends TType > | Wraps the XLA DotGeneral operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral . |
DrawBoundingBoxes <T extends TNumber > | Draw bounding boxes on a batch of images. |
DummyIterationCounter | |
DummyMemoryCache | |
DummySeedGenerator | |
DynamicPartition <T extends TType > | Partitions `data` into `num_partitions` tensors using indices from `partitions`. |
DynamicSlice <T extends TType > | Wraps the XLA DynamicSlice operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice . |
DynamicStitch <T extends TType > | Interleave the values from the `data` tensors into a single tensor. |
DynamicUpdateSlice <T extends TType > | Wraps the XLA DynamicUpdateSlice operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice . |
EditDistance | Computes the (possibly normalized) Levenshtein Edit Distance. |
Eig <U extends TType > | Computes the eigen decomposition of one or more square matrices. |
Einsum <T extends TType > | An op which supports basic einsum op with 2 inputs and 1 output. |
Elu <T extends TNumber > | Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. |
EluGrad <T extends TNumber > | Computes gradients for the exponential linear (Elu) operation. |
EmbeddingActivations | An op enabling differentiation of TPU Embeddings. |
Empty <T extends TType > | Creates a tensor with the given shape. |
EmptyTensorList | Creates and returns an empty tensor list. |
EmptyTensorMap | Creates and returns an empty tensor map. |
EncodeBase64 | Encode strings into web-safe base64 format. |
EncodeJpeg | JPEG-encode an image. |
EncodeJpegVariableQuality | JPEG encode input image with provided compression quality. |
EncodePng | PNG-encode an image. |
EncodeProto | The op serializes protobuf messages provided in the input tensors. |
EncodeWav | Encode audio data using the WAV file format. |
EnqueueTPUEmbeddingIntegerBatch | An op that enqueues a list of input batch tensors to TPUEmbedding. |
EnqueueTPUEmbeddingRaggedTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup(). |
EnqueueTPUEmbeddingSparseBatch | An op that enqueues TPUEmbedding input indices from a SparseTensor. |
EnqueueTPUEmbeddingSparseTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). |
EnsureShape <T extends TType > | Ensures that the tensor's shape matches the expected shape. |
Enter <T extends TType > | Creates or finds a child frame, and makes `data` available to the child frame. |
לְהִשְׁתַווֹת | Returns the truth value of (x == y) element-wise. |
Erf <T extends TNumber > | Computes the Gauss error function of `x` element-wise. |
Erfc <T extends TNumber > | Computes the complementary error function of `x` element-wise. |
EuclideanNorm <T extends TType > | Computes the euclidean norm of elements across dimensions of a tensor. |
לְבַצֵעַ | Op that loads and executes a TPU program on a TPU device. |
ExecuteAndUpdateVariables | Op that executes a program with optional in-place variable updates. |
Exit <T extends TType > | Exits the current frame to its parent frame. |
Exp <T extends TType > | Computes exponential of x element-wise. |
ExpandDims <T extends TType > | Inserts a dimension of 1 into a tensor's shape. |
Expint <T extends TNumber > | |
Expm1 <T extends TType > | Computes `exp(x) - 1` element-wise. |
ExtractGlimpse | Extracts a glimpse from the input tensor. |
ExtractImagePatches <T extends TType > | Extract `patches` from `images` and put them in the "depth" output dimension. |
ExtractJpegShape <T extends TNumber > | Extract the shape information of a JPEG-encoded image. |
ExtractVolumePatches <T extends TNumber > | Extract `patches` from `input` and put them in the `"depth"` output dimension. |
עוּבדָה | Output a fact about factorials. |
FakeQuantWithMinMaxArgs | Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. |
FakeQuantWithMinMaxArgsGradient | Compute gradients for a FakeQuantWithMinMaxArgs operation. |
FakeQuantWithMinMaxVars | Fake-quantize the 'inputs' tensor of type float via global float scalars Fake-quantize the `inputs` tensor of type float via global float scalars `min` and `max` to `outputs` tensor of same shape as `inputs`. |
FakeQuantWithMinMaxVarsGradient | Compute gradients for a FakeQuantWithMinMaxVars operation. |
FakeQuantWithMinMaxVarsPerChannel | Fake-quantize the 'inputs' tensor of type float via per-channel floats Fake-quantize the `inputs` tensor of type float per-channel and one of the shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` to `outputs` tensor of same shape as `inputs`. |
FakeQuantWithMinMaxVarsPerChannelGradient | Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. |
Fft <T extends TType > | Fast Fourier transform. |
Fft2d <T extends TType > | 2D fast Fourier transform. |
Fft3d <T extends TType > | 3D fast Fourier transform. |
FifoQueue | A queue that produces elements in first-in first-out order. |
Fill <U extends TType > | Creates a tensor filled with a scalar value. |
FilterByLastComponentDataset | Creates a dataset containing elements of first component of `input_dataset` having true in the last component. |
טְבִיעַת אֶצבָּעוֹת | Generates fingerprint values. |
FixedLengthRecordDataset | |
FixedLengthRecordReader | A Reader that outputs fixed-length records from a file. |
FixedUnigramCandidateSampler | Generates labels for candidate sampling with a learned unigram distribution. |
Floor <T extends TNumber > | Returns element-wise largest integer not greater than x. |
FloorDiv <T extends TType > | Returns x // y element-wise. |
FloorMod <T extends TNumber > | Returns element-wise remainder of division. |
FlushSummaryWriter | |
FractionalAvgPool <T extends TNumber > | Performs fractional average pooling on the input. |
FractionalAvgPoolGrad <T extends TNumber > | Computes gradient of the FractionalAvgPool function. |
FractionalMaxPool <T extends TNumber > | Performs fractional max pooling on the input. |
FractionalMaxPoolGrad <T extends TNumber > | Computes gradient of the FractionalMaxPool function. |
FresnelCos <T extends TNumber > | |
FresnelSin <T extends TNumber > | |
FusedBatchNorm <T extends TNumber , U extends TNumber > | Batch normalization. |
FusedBatchNormGrad <T extends TNumber , U extends TNumber > | Gradient for batch normalization. |
FusedPadConv2d <T extends TNumber > | Performs a padding as a preprocess during a convolution. |
FusedResizeAndPadConv2d <T extends TNumber > | Performs a resize and padding as a preprocess during a convolution. |
GRUBlockCell <T extends TNumber > | Computes the GRU cell forward propagation for 1 time step. |
GRUBlockCellGrad <T extends TNumber > | Computes the GRU cell back-propagation for 1 time step. |
Gather <T extends TType > | Wraps the XLA Gather operator documented at https://www.tensorflow.org/xla/operation_semantics#gather |
GatherNd <T extends TType > | Gather slices from `params` into a Tensor with shape specified by `indices`. |
GatherV2 <T extends TNumber > | Mutually accumulates multiple tensors of identical type and shape. |
GenerateBoundingBoxProposals | This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497 The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors, applies non-maximal suppression on overlapping boxes with higher than `nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter side is less than `min_size`. |
GenerateVocabRemapping | Given a path to new and old vocabulary files, returns a remapping Tensor of length `num_new_vocab`, where `remapping[i]` contains the row number in the old vocabulary that corresponds to row `i` in the new vocabulary (starting at line `new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i` in the new vocabulary is not in the old vocabulary. |
GetSessionHandle | Store the input tensor in the state of the current session. |
GetSessionTensor <T extends TType > | Get the value of the tensor specified by its handle. |
גדול יותר | Returns the truth value of (x > y) element-wise. |
GreaterEqual | Returns the truth value of (x >= y) element-wise. |
GuaranteeConst <T extends TType > | Gives a guarantee to the TF runtime that the input tensor is a constant. |
HashTable | Creates a non-initialized hash table. |
HistogramFixedWidth <U extends TNumber > | Return histogram of values. |
HistogramSummary | Outputs a `Summary` protocol buffer with a histogram. |
HsvToRgb <T extends TNumber > | Convert one or more images from HSV to RGB. |
Identity <T extends TType > | Return a tensor with the same shape and contents as the input tensor or value. |
IdentityN | Returns a list of tensors with the same shapes and contents as the input tensors. |
IdentityReader | A Reader that outputs the queued work as both the key and value. |
Ifft <T extends TType > | Inverse fast Fourier transform. |
Ifft2d <T extends TType > | Inverse 2D fast Fourier transform. |
Ifft3d <T extends TType > | Inverse 3D fast Fourier transform. |
Igamma <T extends TNumber > | Compute the lower regularized incomplete Gamma function `P(a, x)`. |
IgammaGradA <T extends TNumber > | Computes the gradient of `igamma(a, x)` wrt `a`. |
Igammac <T extends TNumber > | Compute the upper regularized incomplete Gamma function `Q(a, x)`. |
IgnoreErrorsDataset | Creates a dataset that contains the elements of `input_dataset` ignoring errors. |
Imag <U extends TNumber > | Returns the imaginary part of a complex number. |
ImageProjectiveTransformV2 <T extends TNumber > | Applies the given transform to each of the images. |
ImageProjectiveTransformV3 <T extends TNumber > | Applies the given transform to each of the images. |
ImageSummary | Outputs a `Summary` protocol buffer with images. |
ImmutableConst <T extends TType > | Returns immutable tensor from memory region. |
ImportEvent | |
InTopK | Says whether the targets are in the top `K` predictions. |
InfeedDequeue <T extends TType > | A placeholder op for a value that will be fed into the computation. |
InfeedDequeueTuple | Fetches multiple values from infeed as an XLA tuple. |
InfeedEnqueue | An op which feeds a single Tensor value into the computation. |
InfeedEnqueuePrelinearizedBuffer | An op which enqueues prelinearized buffer into TPU infeed. |
InfeedEnqueueTuple | Feeds multiple Tensor values into the computation as an XLA tuple. |
Init | |
InitializeTable | Table initializer that takes two tensors for keys and values respectively. |
InitializeTableFromDataset | |
InitializeTableFromTextFile | Initializes a table from a text file. |
InplaceAdd <T extends TType > | Adds v into specified rows of x. |
InplaceSub <T extends TType > | Subtracts `v` into specified rows of `x`. |
InplaceUpdate <T extends TType > | Updates specified rows 'i' with values 'v'. |
Inv <T extends TType > | Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). |
InvGrad <T extends TType > | Computes the gradient for the inverse of `x` wrt its input. |
Invert <T extends TNumber > | Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. |
InvertPermutation <T extends TNumber > | Computes the inverse permutation of a tensor. |
Irfft <U extends TNumber > | Inverse real-valued fast Fourier transform. |
Irfft2d <U extends TNumber > | Inverse 2D real-valued fast Fourier transform. |
Irfft3d <U extends TNumber > | Inverse 3D real-valued fast Fourier transform. |
IsBoostedTreesEnsembleInitialized | Checks whether a tree ensemble has been initialized. |
IsBoostedTreesQuantileStreamResourceInitialized | Checks whether a quantile stream has been initialized. |
IsFinite | Returns which elements of x are finite. |
IsInf | Returns which elements of x are Inf. |
IsNan | Returns which elements of x are NaN. |
IsVariableInitialized | Checks whether a tensor has been initialized. |
IsotonicRegression <U extends TNumber > | Solves a batch of isotonic regression problems. |
Iterator | |
IteratorFromStringHandle | |
IteratorGetDevice | Returns the name of the device on which `resource` has been placed. |
IteratorGetNext | Gets the next output from the given iterator . |
IteratorGetNextAsOptional | Gets the next output from the given iterator as an Optional variant. |
IteratorGetNextSync | Gets the next output from the given iterator. |
IteratorToStringHandle | Converts the given `resource_handle` representing an iterator to a string. |
לְהִצְטַרֵף | Joins the strings in the given list of string tensors into one tensor; with the given separator (default is an empty separator). |
KMC2ChainInitialization | Returns the index of a data point that should be added to the seed set. |
KeyValueSort <T extends TNumber , U extends TType > | Wraps the XLA Sort operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#sort . |
KmeansPlusPlusInitialization | Selects num_to_sample rows of input using the KMeans++ criterion. |
KthOrderStatistic | Computes the Kth order statistic of a data set. |
L2Loss <T extends TNumber > | L2 Loss. |
LMDBDataset | Creates a dataset that emits the key-value pairs in one or more LMDB files. |
LSTMBlockCell <T extends TNumber > | Computes the LSTM cell forward propagation for 1 time step. |
LSTMBlockCellGrad <T extends TNumber > | Computes the LSTM cell backward propagation for 1 timestep. |
LatencyStatsDataset | Records the latency of producing `input_dataset` elements in a StatsAggregator. |
LeakyRelu <T extends TNumber > | Computes rectified linear: `max(features, features * alpha)`. |
LeakyReluGrad <T extends TNumber > | Computes rectified linear gradients for a LeakyRelu operation. |
LearnedUnigramCandidateSampler | Generates labels for candidate sampling with a learned unigram distribution. |
LeftShift <T extends TNumber > | Elementwise computes the bitwise left-shift of `x` and `y`. |
פָּחוֹת | Returns the truth value of (x < y) element-wise. |
LessEqual | Returns the truth value of (x <= y) element-wise. |
Lgamma <T extends TNumber > | Computes the log of the absolute value of `Gamma(x)` element-wise. |
LinSpace <T extends TNumber > | Generates values in an interval. |
LmdbDataset | |
LmdbReader | A Reader that outputs the records from a LMDB file. |
LoadAndRemapMatrix | Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint at `ckpt_path` and potentially reorders its rows and columns using the specified remappings. |
LoadTPUEmbeddingADAMParameters | Load ADAM embedding parameters. |
LoadTPUEmbeddingADAMParametersGradAccumDebug | Load ADAM embedding parameters with debug support. |
LoadTPUEmbeddingAdadeltaParameters | Load Adadelta embedding parameters. |
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug | Load Adadelta parameters with debug support. |
LoadTPUEmbeddingAdagradParameters | Load Adagrad embedding parameters. |
LoadTPUEmbeddingAdagradParametersGradAccumDebug | Load Adagrad embedding parameters with debug support. |
LoadTPUEmbeddingCenteredRMSPropParameters | Load centered RMSProp embedding parameters. |
LoadTPUEmbeddingFTRLParameters | Load FTRL embedding parameters. |
LoadTPUEmbeddingFTRLParametersGradAccumDebug | Load FTRL embedding parameters with debug support. |
LoadTPUEmbeddingMDLAdagradLightParameters | Load MDL Adagrad Light embedding parameters. |
LoadTPUEmbeddingMomentumParameters | Load Momentum embedding parameters. |
LoadTPUEmbeddingMomentumParametersGradAccumDebug | Load Momentum embedding parameters with debug support. |
LoadTPUEmbeddingProximalAdagradParameters | Load proximal Adagrad embedding parameters. |
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug | Load proximal Adagrad embedding parameters with debug support. |
LoadTPUEmbeddingProximalYogiParameters | |
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug | |
LoadTPUEmbeddingRMSPropParameters | Load RMSProp embedding parameters. |
LoadTPUEmbeddingRMSPropParametersGradAccumDebug | Load RMSProp embedding parameters with debug support. |
LoadTPUEmbeddingStochasticGradientDescentParameters | Load SGD embedding parameters. |
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug | Load SGD embedding parameters. |
LocalResponseNormalization <T extends TNumber > | Local Response Normalization. |
LocalResponseNormalizationGrad <T extends TNumber > | Gradients for Local Response Normalization. |
Log <T extends TType > | Computes natural logarithm of x element-wise. |
Log1p <T extends TType > | Computes natural logarithm of (1 + x) element-wise. |
LogMatrixDeterminant <T extends TType > | Computes the sign and the log of the absolute value of the determinant of one or more square matrices. |
LogSoftmax <T extends TNumber > | Computes log softmax activations. |
LogUniformCandidateSampler | Generates labels for candidate sampling with a log-uniform distribution. |
LogicalAnd | Returns the truth value of x AND y element-wise. |
LogicalNot | Returns the truth value of `NOT x` element-wise. |
LogicalOr | Returns the truth value of x OR y element-wise. |
LookupTableExport <T extends TType , U extends TType > | Outputs all keys and values in the table. |
LookupTableFind <U extends TType > | Looks up keys in a table, outputs the corresponding values. |
LookupTableImport | Replaces the contents of the table with the specified keys and values. |
LookupTableInsert | Updates the table to associates keys with values. |
LookupTableRemove | Removes keys and its associated values from a table. |
LookupTableSize | Computes the number of elements in the given table. |
LoopCond | Forwards the input to the output. |
לְהוֹרִיד | Converts all uppercase characters into their respective lowercase replacements. |
LowerBound <U extends TNumber > | Applies lower_bound(sorted_search_values, values) along each row. |
Lu <T extends TType , U extends TNumber > | Computes the LU decomposition of one or more square matrices. |
MakeIterator | Makes a new iterator from the given `dataset` and stores it in `iterator`. |
MakeUnique | Make all elements in the non-Batch dimension unique, but \"close\" to their initial value. |
MapClear | Op removes all elements in the underlying container. |
MapIncompleteSize | Op returns the number of incomplete elements in the underlying container. |
MapPeek | Op peeks at the values at the specified key. |
MapSize | Op returns the number of elements in the underlying container. |
MapStage | Stage (key, values) in the underlying container which behaves like a hashtable. |
MapUnstage | Op removes and returns the values associated with the key from the underlying container. |
MapUnstageNoKey | Op removes and returns a random (key, value) from the underlying container. |
MatMul <T extends TType > | Multiply the matrix "a" by the matrix "b". |
MatchingFiles | Returns the set of files matching one or more glob patterns. |
MatchingFilesDataset | |
MatrixDiag <T extends TType > | Returns a batched diagonal tensor with given batched diagonal values. |
MatrixDiagPart <T extends TType > | Returns the batched diagonal part of a batched tensor. |
MatrixDiagPartV3 <T extends TType > | Returns the batched diagonal part of a batched tensor. |
MatrixDiagV3 <T extends TType > | Returns a batched diagonal tensor with given batched diagonal values. |
MatrixLogarithm <T extends TType > | Computes the matrix logarithm of one or more square matrices: \\(log(exp(A)) = A\\) This op is only defined for complex matrices. |
MatrixSetDiag <T extends TType > | Returns a batched matrix tensor with new batched diagonal values. |
MatrixSolveLs <T extends TType > | Solves one or more linear least-squares problems. |
Max <T extends TType > | Computes the maximum of elements across dimensions of a tensor. |
MaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. |
MaxPool <T extends TType > | Performs max pooling on the input. |
MaxPool3d <T extends TNumber > | Performs 3D max pooling on the input. |
MaxPool3dGrad <U extends TNumber > | Computes gradients of 3D max pooling function. |
MaxPool3dGradGrad <T extends TNumber > | Computes second-order gradients of the maxpooling function. |
MaxPoolGrad <T extends TNumber > | Computes gradients of the maxpooling function. |
MaxPoolGradGrad <T extends TNumber > | Computes second-order gradients of the maxpooling function. |
MaxPoolGradGradWithArgmax <T extends TNumber > | Computes second-order gradients of the maxpooling function. |
MaxPoolGradWithArgmax <T extends TNumber > | Computes gradients of the maxpooling function. |
MaxPoolWithArgmax <T extends TNumber , U extends TNumber > | Performs max pooling on the input and outputs both max values and indices. |
Maximum <T extends TNumber > | Returns the max of x and y (ie |
Mean <T extends TType > | Computes the mean of elements across dimensions of a tensor. |
Merge <T extends TType > | Forwards the value of an available tensor from `inputs` to `output`. |
MergeSummary | Merges summaries. |
MergeV2Checkpoints | V2 format specific: merges the metadata files of sharded checkpoints. |
Mfcc | Transforms a spectrogram into a form that's useful for speech recognition. |
Min <T extends TType > | Computes the minimum of elements across dimensions of a tensor. |
Minimum <T extends TNumber > | Returns the min of x and y (ie |
MirrorPad <T extends TType > | Pads a tensor with mirrored values. |
MirrorPadGrad <T extends TType > | Gradient op for `MirrorPad` op. |
MlirPassthroughOp | Wraps an arbitrary MLIR computation expressed as a module with a main() function. |
Mod <T extends TNumber > | Returns element-wise remainder of division. |
ModelDataset | Identity transformation that models performance. |
Mul <T extends TType > | Returns x * y element-wise. |
MulNoNan <T extends TType > | Returns x * y element-wise. |
MultiDeviceIterator | Creates a MultiDeviceIterator resource. |
MultiDeviceIteratorFromStringHandle | Generates a MultiDeviceIterator resource from its provided string handle. |
MultiDeviceIteratorGetNextFromShard | Gets next element for the provided shard number. |
MultiDeviceIteratorInit | Initializes the multi device iterator with the given dataset. |
MultiDeviceIteratorToStringHandle | Produces a string handle for the given MultiDeviceIterator. |
Multinomial <U extends TNumber > | Draws samples from a multinomial distribution. |
MutableDenseHashTable | Creates an empty hash table that uses tensors as the backing store. |
MutableHashTable | Creates an empty hash table. |
MutableHashTableOfTensors | Creates an empty hash table. |
Mutex | Creates a Mutex resource that can be locked by `MutexLock`. |
MutexLock | Locks a mutex resource. |
NcclAllReduce <T extends TNumber > | Outputs a tensor containing the reduction across all input tensors. |
NcclBroadcast <T extends TNumber > | Sends `input` to all devices that are connected to the output. |
NcclReduce <T extends TNumber > | Reduces `input` from `num_devices` using `reduction` to a single device. |
Ndtri <T extends TNumber > | |
NearestNeighbors | Selects the k nearest centers for each point. |
Neg <T extends TType > | Computes numerical negative value element-wise. |
NegTrain | Training via negative sampling. |
NextAfter <T extends TNumber > | Returns the next representable value of `x1` in the direction of `x2`, element-wise. |
NextIteration <T extends TType > | Makes its input available to the next iteration. |
NoOp | Does nothing. |
NonDeterministicInts <U extends TType > | Non-deterministically generates some integers. |
NonMaxSuppression <T extends TNumber > | Greedily selects a subset of bounding boxes in descending order of score, pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. |
NonMaxSuppressionWithOverlaps | Greedily selects a subset of bounding boxes in descending order of score, pruning away boxes that have high overlaps with previously selected boxes. |
NonSerializableDataset | |
NotEqual | Returns the truth value of (x != y) element-wise. |
NthElement <T extends TNumber > | Finds values of the `n`-th order statistic for the last dimension. |
OneHot <U extends TType > | Returns a one-hot tensor. |
OnesLike <T extends TType > | Returns a tensor of ones with the same shape and type as x. |
OptimizeDataset | Creates a dataset by applying optimizations to `input_dataset`. |
OptimizeDatasetV2 | Creates a dataset by applying related optimizations to `input_dataset`. |
OptionalFromValue | Constructs an Optional variant from a tuple of tensors. |
OptionalGetValue | Returns the value stored in an Optional variant or raises an error if none exists. |
OptionalHasValue | Returns true if and only if the given Optional variant has a value. |
OptionalNone | Creates an Optional variant with no value. |
OrderedMapClear | Op removes all elements in the underlying container. |
OrderedMapIncompleteSize | Op returns the number of incomplete elements in the underlying container. |
OrderedMapPeek | Op peeks at the values at the specified key. |
OrderedMapSize | Op returns the number of elements in the underlying container. |
OrderedMapStage | Stage (key, values) in the underlying container which behaves like a ordered associative container. |
OrderedMapUnstage | Op removes and returns the values associated with the key from the underlying container. |
OrderedMapUnstageNoKey | Op removes and returns the (key, value) element with the smallest key from the underlying container. |
OrdinalSelector | A TPU core selector Op. |
OutfeedDequeue <T extends TType > | Retrieves a single tensor from the computation outfeed. |
OutfeedDequeueTuple | Retrieve multiple values from the computation outfeed. |
OutfeedDequeueTupleV2 | Retrieve multiple values from the computation outfeed. |
OutfeedDequeueV2 <T extends TType > | Retrieves a single tensor from the computation outfeed. |
OutfeedEnqueue | Enqueue a Tensor on the computation outfeed. |
OutfeedEnqueueTuple | Enqueue multiple Tensor values on the computation outfeed. |
Pad <T extends TType > | Wraps the XLA Pad operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#pad . |
PaddedBatchDataset | Creates a dataset that batches and pads `batch_size` elements from the input. |
PaddingFifoQueue | A queue that produces elements in first-in first-out order. |
ParallelConcat <T extends TType > | Concatenates a list of `N` tensors along the first dimension. |
ParallelDynamicStitch <T extends TType > | Interleave the values from the `data` tensors into a single tensor. |
ParameterizedTruncatedNormal <U extends TNumber > | Outputs random values from a normal distribution. |
ParseExample | Transforms a vector of tf.Example protos (as strings) into typed tensors. |
ParseExampleDataset | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. |
ParseSequenceExample | Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors. |
ParseSingleExample | Transforms a tf.Example proto (as a string) into typed tensors. |
ParseSingleSequenceExample | Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. |
ParseTensor <T extends TType > | Transforms a serialized tensorflow.TensorProto proto into a Tensor. |
PartitionedInput <T extends TType > | An op that groups a list of partitioned inputs together. |
PartitionedOutput <T extends TType > | An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned outputs outside the XLA computation. |
Placeholder <T extends TType > | A placeholder op for a value that will be fed into the computation. |
PlaceholderWithDefault <T extends TType > | A placeholder op that passes through `input` when its output is not fed. |
Polygamma <T extends TNumber > | Compute the polygamma function \\(\psi^{(n)}(x)\\). |
PopulationCount | Computes element-wise population count (aka |
Pow <T extends TType > | Computes the power of one value to another. |
PrefetchDataset | Creates a dataset that asynchronously prefetches elements from `input_dataset`. |
Prelinearize | An op which linearizes one Tensor value to an opaque variant tensor. |
PrelinearizeTuple | An op which linearizes multiple Tensor values to an opaque variant tensor. |
PreventGradient <T extends TType > | An identity op that triggers an error if a gradient is requested. |
הֶדפֵּס | Prints a string scalar. |
PriorityQueue | A queue that produces elements sorted by the first component value. |
PrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
Prod <T extends TType > | Computes the product of elements across dimensions of a tensor. |
Qr <T extends TType > | Computes the QR decompositions of one or more matrices. |
Quantize <T extends TType > | Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. |
QuantizeAndDequantize <T extends TNumber > | Quantizes then dequantizes a tensor. |
QuantizeAndDequantizeV3 <T extends TNumber > | Quantizes then dequantizes a tensor. |
QuantizeAndDequantizeV4 <T extends TNumber > | Returns the gradient of `quantization.QuantizeAndDequantizeV4`. |
QuantizeAndDequantizeV4Grad <T extends TNumber > | Returns the gradient of `QuantizeAndDequantizeV4`. |
QuantizeDownAndShrinkRange <U extends TType > | Convert the quantized 'input' tensor into a lower-precision 'output', using the actual distribution of the values to maximize the usage of the lower bit depth and adjusting the output min and max ranges accordingly. |
QuantizedAdd <V extends TType > | Returns x + y element-wise, working on quantized buffers. |
QuantizedAvgPool <T extends TType > | Produces the average pool of the input tensor for quantized types. |
QuantizedBatchNormWithGlobalNormalization <U extends TType > | Quantized Batch normalization. |
QuantizedBiasAdd <V extends TType > | Adds Tensor 'bias' to Tensor 'input' for Quantized types. |
QuantizedConcat <T extends TType > | Concatenates quantized tensors along one dimension. |
QuantizedConv2DAndRelu <V extends TType > | |
QuantizedConv2DAndReluAndRequantize <V extends TType > | |
QuantizedConv2DAndRequantize <V extends TType > | |
QuantizedConv2DPerChannel <V extends TType > | Computes QuantizedConv2D per channel. |
QuantizedConv2DWithBias <V extends TType > | |
QuantizedConv2DWithBiasAndRelu <V extends TType > | |
QuantizedConv2DWithBiasAndReluAndRequantize <W extends TType > | |
QuantizedConv2DWithBiasAndRequantize <W extends TType > | |
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize <X extends TType > | |
QuantizedConv2DWithBiasSumAndRelu <V extends TType > | |
QuantizedConv2DWithBiasSumAndReluAndRequantize <X extends TType > | |
QuantizedConv2d <V extends TType > | Computes a 2D convolution given quantized 4D input and filter tensors. |
QuantizedDepthwiseConv2D <V extends TType > | Computes quantized depthwise Conv2D. |
QuantizedDepthwiseConv2DWithBias <V extends TType > | Computes quantized depthwise Conv2D with Bias. |
QuantizedDepthwiseConv2DWithBiasAndRelu <V extends TType > | Computes quantized depthwise Conv2D with Bias and Relu. |
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize <W extends TType > | Computes quantized depthwise Conv2D with Bias, Relu and Requantize. |
QuantizedInstanceNorm <T extends TType > | Quantized Instance normalization. |
QuantizedMatMul <V extends TType > | Perform a quantized matrix multiplication of `a` by the matrix `b`. |
QuantizedMatMulWithBias <W extends TType > | Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. |
QuantizedMatMulWithBiasAndDequantize <W extends TNumber > | |
QuantizedMatMulWithBiasAndRelu <V extends TType > | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. |
QuantizedMatMulWithBiasAndReluAndRequantize <W extends TType > | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. |
QuantizedMatMulWithBiasAndRequantize <W extends TType > | |
QuantizedMaxPool <T extends TType > | Produces the max pool of the input tensor for quantized types. |
QuantizedMul <V extends TType > | Returns x * y element-wise, working on quantized buffers. |
QuantizedRelu <U extends TType > | Computes Quantized Rectified Linear: `max(features, 0)` |
QuantizedRelu6 <U extends TType > | Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` |
QuantizedReluX <U extends TType > | Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` |
QuantizedReshape <T extends TType > | Reshapes a quantized tensor as per the Reshape op. |
QuantizedResizeBilinear <T extends TType > | Resize quantized `images` to `size` using quantized bilinear interpolation. |
QueueClose | Closes the given queue. |
QueueDequeue | Dequeues a tuple of one or more tensors from the given queue. |
QueueDequeueMany | Dequeues `n` tuples of one or more tensors from the given queue. |
QueueDequeueUpTo | Dequeues `n` tuples of one or more tensors from the given queue. |
QueueEnqueue | Enqueues a tuple of one or more tensors in the given queue. |
QueueEnqueueMany | Enqueues zero or more tuples of one or more tensors in the given queue. |
QueueIsClosed | Returns true if queue is closed. |
QueueSize | Computes the number of elements in the given queue. |
RaggedBincount <U extends TNumber > | Counts the number of occurrences of each value in an integer array. |
RaggedCountSparseOutput <U extends TNumber > | Performs sparse-output bin counting for a ragged tensor input. |
RaggedCross <T extends TType , U extends TNumber > | Generates a feature cross from a list of tensors, and returns it as a RaggedTensor. |
RaggedGather <T extends TNumber , U extends TType > | Gather ragged slices from `params` axis `0` according to `indices`. |
RaggedRange <U extends TNumber , T extends TNumber > | Returns a `RaggedTensor` containing the specified sequences of numbers. |
RaggedTensorFromVariant <U extends TNumber , T extends TType > | Decodes a `variant` Tensor into a `RaggedTensor`. |
RaggedTensorToSparse <U extends TType > | Converts a `RaggedTensor` into a `SparseTensor` with the same values. |
RaggedTensorToTensor <U extends TType > | Create a dense tensor from a ragged tensor, possibly altering its shape. |
RaggedTensorToVariant | Encodes a `RaggedTensor` into a `variant` Tensor. |
RaggedTensorToVariantGradient <U extends TType > | Helper used to compute the gradient for `RaggedTensorToVariant`. |
RandomCrop <T extends TNumber > | Randomly crop `image`. |
RandomDataset | Creates a Dataset that returns pseudorandom numbers. |
RandomGamma <U extends TNumber > | Outputs random values from the Gamma distribution(s) described by alpha. |
RandomGammaGrad <T extends TNumber > | Computes the derivative of a Gamma random sample wrt |
RandomPoisson <V extends TNumber > | Outputs random values from the Poisson distribution(s) described by rate. |
RandomShuffle <T extends TType > | Randomly shuffles a tensor along its first dimension. |
RandomShuffleQueue | A queue that randomizes the order of elements. |
RandomStandardNormal <U extends TNumber > | Outputs random values from a normal distribution. |
RandomUniform <U extends TNumber > | Outputs random values from a uniform distribution. |
RandomUniformInt <U extends TNumber > | Outputs random integers from a uniform distribution. |
Range <T extends TNumber > | Creates a sequence of numbers. |
RangeDataset | Creates a dataset with a range of values. |
דַרגָה | Returns the rank of a tensor. |
ReadFile | Reads and outputs the entire contents of the input filename. |
ReadVariableOp <T extends TType > | Reads the value of a variable. |
ReaderNumRecordsProduced | Returns the number of records this Reader has produced. |
ReaderNumWorkUnitsCompleted | Returns the number of work units this Reader has finished processing. |
ReaderRead | Returns the next record (key, value pair) produced by a Reader. |
ReaderReadUpTo | Returns up to `num_records` (key, value) pairs produced by a Reader. |
ReaderReset | Restore a Reader to its initial clean state. |
ReaderRestoreState | Restore a reader to a previously saved state. |
ReaderSerializeState | Produce a string tensor that encodes the state of a Reader. |
Real <U extends TNumber > | Returns the real part of a complex number. |
RealDiv <T extends TType > | Returns x / y element-wise for real types. |
RebatchDataset | Creates a dataset that changes the batch size. |
RebatchDatasetV2 | Creates a dataset that changes the batch size. |
Reciprocal <T extends TType > | Computes the reciprocal of x element-wise. |
ReciprocalGrad <T extends TType > | Computes the gradient for the inverse of `x` wrt its input. |
RecordInput | Emits randomized records. |
Recv <T extends TType > | Receives the named tensor from another XLA computation. |
RecvTPUEmbeddingActivations | An op that receives embedding activations on the TPU. |
Reduce <T extends TNumber > | Mutually reduces multiple tensors of identical type and shape. |
ReduceAll | Computes the "logical and" of elements across dimensions of a tensor. |
ReduceAny | Computes the "logical or" of elements across dimensions of a tensor. |
ReduceJoin | Joins a string Tensor across the given dimensions. |
ReduceMax <T extends TType > | Computes the maximum of elements across dimensions of a tensor. |
ReduceMin <T extends TType > | Computes the minimum of elements across dimensions of a tensor. |
ReduceProd <T extends TType > | Computes the product of elements across dimensions of a tensor. |
ReduceSum <T extends TType > | Computes the sum of elements across dimensions of a tensor. |
ReduceV2 <T extends TNumber > | Mutually reduces multiple tensors of identical type and shape. |
RefEnter <T extends TType > | Creates or finds a child frame, and makes `data` available to the child frame. |
RefExit <T extends TType > | Exits the current frame to its parent frame. |
RefIdentity <T extends TType > | Return the same ref tensor as the input ref tensor. |
RefMerge <T extends TType > | Forwards the value of an available tensor from `inputs` to `output`. |
RefNextIteration <T extends TType > | Makes its input available to the next iteration. |
RefSelect <T extends TType > | Forwards the `index`th element of `inputs` to `output`. |
RefSwitch <T extends TType > | Forwards the ref tensor `data` to the output port determined by `pred`. |
RegexFullMatch | Check if the input matches the regex pattern. |
RegexReplace | Replaces matches of the `pattern` regular expression in `input` with the replacement string provided in `rewrite`. |
RegisterDataset | Registers a dataset with the tf.data service. |
Relu <T extends TType > | Computes rectified linear: `max(features, 0)`. |
Relu6 <T extends TNumber > | Computes rectified linear 6: `min(max(features, 0), 6)`. |
Relu6Grad <T extends TNumber > | Computes rectified linear 6 gradients for a Relu6 operation. |
ReluGrad <T extends TNumber > | Computes rectified linear gradients for a Relu operation. |
RemoteFusedGraphExecute | Execute a sub graph on a remote processor. |
RepeatDataset | Creates a dataset that emits the outputs of `input_dataset` `count` times. |
ReplicaId | Replica ID. |
ReplicateMetadata | Metadata indicating how the TPU computation should be replicated. |
ReplicatedInput <T extends TType > | Connects N inputs to an N-way replicated TPU computation. |
ReplicatedOutput <T extends TType > | Connects N outputs from an N-way replicated TPU computation. |
RequantizationRange | Computes a range that covers the actual values present in a quantized tensor. |
RequantizationRangePerChannel | Computes requantization range per channel. |
Requantize <U extends TType > | Converts the quantized `input` tensor into a lower-precision `output`. |
RequantizePerChannel <U extends TType > | Requantizes input with min and max values known per channel. |
Reshape <T extends TType > | Reshapes a tensor. |
ResizeArea | Resize `images` to `size` using area interpolation. |
ResizeBicubic | Resize `images` to `size` using bicubic interpolation. |
ResizeBicubicGrad <T extends TNumber > | Computes the gradient of bicubic interpolation. |
ResizeBilinear | Resize `images` to `size` using bilinear interpolation. |
ResizeBilinearGrad <T extends TNumber > | Computes the gradient of bilinear interpolation. |
ResizeNearestNeighbor <T extends TNumber > | Resize `images` to `size` using nearest neighbor interpolation. |
ResizeNearestNeighborGrad <T extends TNumber > | Computes the gradient of nearest neighbor interpolation. |
ResourceAccumulatorApplyGradient | Applies a gradient to a given accumulator. |
ResourceAccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. |
ResourceAccumulatorSetGlobalStep | Updates the accumulator with a new value for global_step. |
ResourceAccumulatorTakeGradient <T extends TType > | Extracts the average gradient in the given ConditionalAccumulator. |
ResourceApplyAdaMax | Update '*var' according to the AdaMax algorithm. |
ResourceApplyAdadelta | Update '*var' according to the adadelta scheme. |
ResourceApplyAdagrad | Update '*var' according to the adagrad scheme. |
ResourceApplyAdagradDa | Update '*var' according to the proximal adagrad scheme. |
ResourceApplyAdam | Update '*var' according to the Adam algorithm. |
ResourceApplyAdamWithAmsgrad | Update '*var' according to the Adam algorithm. |
ResourceApplyAddSign | Update '*var' according to the AddSign update. |
ResourceApplyCenteredRmsProp | Update '*var' according to the centered RMSProp algorithm. |
ResourceApplyFtrl | Update '*var' according to the Ftrl-proximal scheme. |
ResourceApplyGradientDescent | Update '*var' by subtracting 'alpha' * 'delta' from it. |
ResourceApplyKerasMomentum | Update '*var' according to the momentum scheme. |
ResourceApplyMomentum | Update '*var' according to the momentum scheme. |
ResourceApplyPowerSign | Update '*var' according to the AddSign update. |
ResourceApplyProximalAdagrad | Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
ResourceApplyProximalGradientDescent | Update '*var' as FOBOS algorithm with fixed learning rate. |
ResourceApplyRmsProp | Update '*var' according to the RMSProp algorithm. |
ResourceConditionalAccumulator | A conditional accumulator for aggregating gradients. |
ResourceCountUpTo <T extends TNumber > | Increments variable pointed to by 'resource' until it reaches 'limit'. |
ResourceGather <U extends TType > | Gather slices from the variable pointed to by `resource` according to `indices`. |
ResourceGatherNd <U extends TType > | |
ResourceScatterAdd | Adds sparse updates to the variable referenced by `resource`. |
ResourceScatterDiv | Divides sparse updates into the variable referenced by `resource`. |
ResourceScatterMax | Reduces sparse updates into the variable referenced by `resource` using the `max` operation. |
ResourceScatterMin | Reduces sparse updates into the variable referenced by `resource` using the `min` operation. |
ResourceScatterMul | Multiplies sparse updates into the variable referenced by `resource`. |
ResourceScatterNdAdd | Applies sparse addition to individual values or slices in a Variable. |
ResourceScatterNdMax | |
ResourceScatterNdMin | |
ResourceScatterNdSub | Applies sparse subtraction to individual values or slices in a Variable. |
ResourceScatterNdUpdate | Applies sparse `updates` to individual values or slices within a given variable according to `indices`. |
ResourceScatterSub | Subtracts sparse updates from the variable referenced by `resource`. |
ResourceScatterUpdate | Assigns sparse updates to the variable referenced by `resource`. |
ResourceSparseApplyAdadelta | var: Should be from a Variable(). |
ResourceSparseApplyAdagrad | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
ResourceSparseApplyAdagradDa | Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
ResourceSparseApplyAdagradV2 | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
ResourceSparseApplyCenteredRmsProp | Update '*var' according to the centered RMSProp algorithm. |
ResourceSparseApplyFtrl | Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
ResourceSparseApplyKerasMomentum | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
ResourceSparseApplyMomentum | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
ResourceSparseApplyProximalAdagrad | Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
ResourceSparseApplyProximalGradientDescent | Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
ResourceSparseApplyRmsProp | Update '*var' according to the RMSProp algorithm. |
ResourceStridedSliceAssign | Assign `value` to the sliced l-value reference of `ref`. |
לְשַׁחְזֵר | Restores tensors from a V2 checkpoint. |
RestoreSlice <T extends TType > | Restores a tensor from checkpoint files. |
RetrieveTPUEmbeddingADAMParameters | Retrieve ADAM embedding parameters. |
RetrieveTPUEmbeddingADAMParametersGradAccumDebug | Retrieve ADAM embedding parameters with debug support. |
RetrieveTPUEmbeddingAdadeltaParameters | Retrieve Adadelta embedding parameters. |
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug | Retrieve Adadelta embedding parameters with debug support. |
RetrieveTPUEmbeddingAdagradParameters | Retrieve Adagrad embedding parameters. |
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug | Retrieve Adagrad embedding parameters with debug support. |
RetrieveTPUEmbeddingCenteredRMSPropParameters | Retrieve centered RMSProp embedding parameters. |
RetrieveTPUEmbeddingFTRLParameters | Retrieve FTRL embedding parameters. |
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug | Retrieve FTRL embedding parameters with debug support. |
RetrieveTPUEmbeddingMDLAdagradLightParameters | Retrieve MDL Adagrad Light embedding parameters. |
RetrieveTPUEmbeddingMomentumParameters | Retrieve Momentum embedding parameters. |
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug | Retrieve Momentum embedding parameters with debug support. |
RetrieveTPUEmbeddingProximalAdagradParameters | Retrieve proximal Adagrad embedding parameters. |
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug | Retrieve proximal Adagrad embedding parameters with debug support. |
RetrieveTPUEmbeddingProximalYogiParameters | |
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug | |
RetrieveTPUEmbeddingRMSPropParameters | Retrieve RMSProp embedding parameters. |
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug | Retrieve RMSProp embedding parameters with debug support. |
RetrieveTPUEmbeddingStochasticGradientDescentParameters | Retrieve SGD embedding parameters. |
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug | Retrieve SGD embedding parameters with debug support. |
Reverse <T extends TType > | Reverses specific dimensions of a tensor. |
ReverseSequence <T extends TType > | Reverses variable length slices. |
Rfft <U extends TType > | Real-valued fast Fourier transform. |
Rfft2d <U extends TType > | 2D real-valued fast Fourier transform. |
Rfft3d <U extends TType > | 3D real-valued fast Fourier transform. |
RgbToHsv <T extends TNumber > | Converts one or more images from RGB to HSV. |
RightShift <T extends TNumber > | Elementwise computes the bitwise right-shift of `x` and `y`. |
Rint <T extends TNumber > | Returns element-wise integer closest to x. |
RngReadAndSkip | Advance the counter of a counter-based RNG. |
RngSkip | Advance the counter of a counter-based RNG. |
Roll <T extends TType > | Rolls the elements of a tensor along an axis. |
Round <T extends TType > | Rounds the values of a tensor to the nearest integer, element-wise. |
Rpc | Perform batches of RPC requests. |
Rsqrt <T extends TType > | Computes reciprocal of square root of x element-wise. |
RsqrtGrad <T extends TType > | Computes the gradient for the rsqrt of `x` wrt its input. |
SampleDistortedBoundingBox <T extends TNumber > | Generate a single randomly distorted bounding box for an image. |
SamplingDataset | Creates a dataset that takes a Bernoulli sample of the contents of another dataset. |
לְהַצִיל | Saves tensors in V2 checkpoint format. |
SaveSlices | Saves input tensors slices to disk. |
ScalarSummary | Outputs a `Summary` protocol buffer with scalar values. |
ScaleAndTranslate | |
ScaleAndTranslateGrad <T extends TNumber > | |
ScatterAdd <T extends TType > | Adds sparse updates to a variable reference. |
ScatterDiv <T extends TType > | Divides a variable reference by sparse updates. |
ScatterMax <T extends TNumber > | Reduces sparse updates into a variable reference using the `max` operation. |
ScatterMin <T extends TNumber > | Reduces sparse updates into a variable reference using the `min` operation. |
ScatterMul <T extends TType > | Multiplies sparse updates into a variable reference. |
ScatterNd <U extends TType > | Scatter `updates` into a new tensor according to `indices`. |
ScatterNdAdd <T extends TType > | Applies sparse addition to individual values or slices in a Variable. |
ScatterNdMax <T extends TType > | Computes element-wise maximum. |
ScatterNdMin <T extends TType > | Computes element-wise minimum. |
ScatterNdNonAliasingAdd <T extends TType > | Applies sparse addition to `input` using individual values or slices from `updates` according to indices `indices`. |
ScatterNdSub <T extends TType > | Applies sparse subtraction to individual values or slices in a Variable. |
ScatterNdUpdate <T extends TType > | Applies sparse `updates` to individual values or slices within a given variable according to `indices`. |
ScatterSub <T extends TType > | Subtracts sparse updates to a variable reference. |
ScatterUpdate <T extends TType > | Applies sparse updates to a variable reference. |
SdcaFprint | Computes fingerprints of the input strings. |
SdcaOptimizer | Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for linear models with L1 + L2 regularization. |
SdcaShrinkL1 | Applies L1 regularization shrink step on the parameters. |
SegmentMax <T extends TNumber > | Computes the maximum along segments of a tensor. |
SegmentMean <T extends TType > | Computes the mean along segments of a tensor. |
SegmentMin <T extends TNumber > | Computes the minimum along segments of a tensor. |
SegmentProd <T extends TType > | Computes the product along segments of a tensor. |
SegmentSum <T extends TType > | Computes the sum along segments of a tensor. |
Select <T extends TType > | |
SelfAdjointEig <T extends TType > | Computes the eigen decomposition of a batch of self-adjoint matrices (Note: Only real inputs are supported). |
Selu <T extends TNumber > | Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` if < 0, `scale * features` otherwise. |
SeluGrad <T extends TNumber > | Computes gradients for the scaled exponential linear (Selu) operation. |
לִשְׁלוֹחַ | Sends the named tensor to another XLA computation. |
SendTPUEmbeddingGradients | Performs gradient updates of embedding tables. |
SerializeIterator | Converts the given `resource_handle` representing an iterator to a variant tensor. |
SerializeManySparse <U extends TType > | Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. |
SerializeSparse <U extends TType > | Serialize a `SparseTensor` into a `[3]` `Tensor` object. |
SerializeTensor | Transforms a Tensor into a serialized TensorProto proto. |
SetDiff1d <T extends TType , U extends TNumber > | Computes the difference between two lists of numbers or strings. |
SetSize | Number of unique elements along last dimension of input `set`. |
SetStatsAggregatorDataset | |
Shape <U extends TNumber > | Returns the shape of a tensor. |
ShapeN <U extends TNumber > | Returns shape of tensors. |
ShardDataset | Creates a `Dataset` that includes only 1/`num_shards` of this dataset. |
ShardedFilename | Generate a sharded filename. |
ShardedFilespec | Generate a glob pattern matching all sharded file names. |
Sharding <T extends TType > | An op which shards the input based on the given sharding attribute. |
ShuffleAndRepeatDataset | |
ShuffleDataset | |
ShutdownDistributedTPU | Shuts down a running distributed TPU system. |
Sigmoid <T extends TType > | Computes sigmoid of `x` element-wise. |
SigmoidGrad <T extends TType > | Computes the gradient of the sigmoid of `x` wrt its input. |
Sign <T extends TType > | Returns an element-wise indication of the sign of a number. |
Sin <T extends TType > | Computes sine of x element-wise. |
Sinh <T extends TType > | Computes hyperbolic sine of x element-wise. |
Size <U extends TNumber > | Returns the size of a tensor. |
SkipDataset | Creates a dataset that skips `count` elements from the `input_dataset`. |
Skipgram | Parses a text file and creates a batch of examples. |
SleepDataset | |
Slice <T extends TType > | Return a slice from 'input'. |
SlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. |
Snapshot <T extends TType > | Returns a copy of the input tensor. |
SobolSample <T extends TNumber > | Generates points from the Sobol sequence. |
Softmax <T extends TNumber > | Computes softmax activations. |
SoftmaxCrossEntropyWithLogits <T extends TNumber > | Computes softmax cross entropy cost and gradients to backpropagate. |
Softplus <T extends TNumber > | Computes softplus: `log(exp(features) + 1)`. |
SoftplusGrad <T extends TNumber > | Computes softplus gradients for a softplus operation. |
Softsign <T extends TNumber > | Computes softsign: `features / (abs(features) + 1)`. |
SoftsignGrad <T extends TNumber > | Computes softsign gradients for a softsign operation. |
Solve <T extends TType > | Solves systems of linear equations. |
Sort <T extends TType > | Wraps the XLA Sort operator, documented at https://www.tensorflow.org/performance/xla/operation_semantics#sort . |
SpaceToBatch <T extends TType > | SpaceToBatch for 4-D tensors of type T. |
SpaceToBatchNd <T extends TType > | SpaceToBatch for ND tensors of type T. |
SpaceToDepth <T extends TType > | SpaceToDepth for tensors of type T. |
SparseAccumulatorApplyGradient | Applies a sparse gradient to a given accumulator. |
SparseAccumulatorTakeGradient <T extends TType > | Extracts the average sparse gradient in a SparseConditionalAccumulator. |
SparseAdd <T extends TType > | Adds two `SparseTensor` objects to produce another `SparseTensor`. |
SparseAddGrad <T extends TType > | The gradient operator for the SparseAdd op. |
SparseApplyAdadelta <T extends TType > | var: Should be from a Variable(). |
SparseApplyAdagrad <T extends TType > | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
SparseApplyAdagradDa <T extends TType > | Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
SparseApplyCenteredRmsProp <T extends TType > | Update '*var' according to the centered RMSProp algorithm. |
SparseApplyFtrl <T extends TType > | Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
SparseApplyMomentum <T extends TType > | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
SparseApplyProximalAdagrad <T extends TType > | Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
SparseApplyProximalGradientDescent <T extends TType > | Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
SparseApplyRmsProp <T extends TType > | Update '*var' according to the RMSProp algorithm. |
SparseBincount <U extends TNumber > | Counts the number of occurrences of each value in an integer array. |
SparseConcat <T extends TType > | Concatenates a list of `SparseTensor` along the specified dimension. |
SparseConditionalAccumulator | A conditional accumulator for aggregating sparse gradients. |
SparseCountSparseOutput <U extends TNumber > | Performs sparse-output bin counting for a sparse tensor input. |
SparseCross | Generates sparse cross from a list of sparse and dense tensors. |
SparseCrossHashed | Generates sparse cross from a list of sparse and dense tensors. |
SparseDenseCwiseAdd <T extends TType > | Adds up a SparseTensor and a dense Tensor, using these special rules: (1) Broadcasts the dense side to have the same shape as the sparse side, if eligible; (2) Then, only the dense values pointed to by the indices of the SparseTensor participate in the cwise addition. |
SparseDenseCwiseDiv <T extends TType > | Component-wise divides a SparseTensor by a dense Tensor. |
SparseDenseCwiseMul <T extends TType > | Component-wise multiplies a SparseTensor by a dense Tensor. |
SparseFillEmptyRows <T extends TType > | Fills empty rows in the input 2-D `SparseTensor` with a default value. |
SparseFillEmptyRowsGrad <T extends TType > | The gradient of SparseFillEmptyRows. |
SparseMatMul | Multiply matrix "a" by matrix "b". |
SparseMatrixAdd | Sparse addition of two CSR matrices, C = alpha * A + beta * B. |
SparseMatrixMatMul <T extends TType > | Matrix-multiplies a sparse matrix with a dense matrix. |
SparseMatrixMul | Element-wise multiplication of a sparse matrix with a dense tensor. |
SparseMatrixNNZ | Returns the number of nonzeroes of `sparse_matrix`. |
SparseMatrixOrderingAMD | Computes the Approximate Minimum Degree (AMD) ordering of `input`. |
SparseMatrixSoftmax | Calculates the softmax of a CSRSparseMatrix. |
SparseMatrixSoftmaxGrad | Calculates the gradient of the SparseMatrixSoftmax op. |
SparseMatrixSparseCholesky | Computes the sparse Cholesky decomposition of `input`. |
SparseMatrixSparseMatMul | Sparse-matrix-multiplies two CSR matrices `a` and `b`. |
SparseMatrixTranspose | Transposes the inner (matrix) dimensions of a CSRSparseMatrix. |
SparseMatrixZeros | Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. |
SparseReduceMax <T extends TNumber > | Computes the max of elements across dimensions of a SparseTensor. |
SparseReduceMaxSparse <T extends TNumber > | Computes the max of elements across dimensions of a SparseTensor. |
SparseReduceSum <T extends TType > | Computes the sum of elements across dimensions of a SparseTensor. |
SparseReduceSumSparse <T extends TType > | Computes the sum of elements across dimensions of a SparseTensor. |
SparseReorder <T extends TType > | Reorders a SparseTensor into the canonical, row-major ordering. |
SparseReshape | Reshapes a SparseTensor to represent values in a new dense shape. |
SparseSegmentMean <T extends TNumber > | Computes the mean along sparse segments of a tensor. |
SparseSegmentMeanGrad <T extends TNumber > | Computes gradients for SparseSegmentMean. |
SparseSegmentMeanWithNumSegments <T extends TNumber > | Computes the mean along sparse segments of a tensor. |
SparseSegmentSqrtN <T extends TNumber > | Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
SparseSegmentSqrtNGrad <T extends TNumber > | Computes gradients for SparseSegmentSqrtN. |
SparseSegmentSqrtNWithNumSegments <T extends TNumber > | Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
SparseSegmentSum <T extends TNumber > | Computes the sum along sparse segments of a tensor. |
SparseSegmentSumWithNumSegments <T extends TNumber > | Computes the sum along sparse segments of a tensor. |
SparseSlice <T extends TType > | Slice a `SparseTensor` based on the `start` and `size`. |
SparseSliceGrad <T extends TType > | The gradient operator for the SparseSlice op. |
SparseSoftmax <T extends TNumber > | Applies softmax to a batched ND `SparseTensor`. |
SparseSoftmaxCrossEntropyWithLogits <T extends TNumber > | Computes softmax cross entropy cost and gradients to backpropagate. |
SparseSparseMaximum <T extends TNumber > | Returns the element-wise max of two SparseTensors. |
SparseSparseMinimum <T extends TType > | Returns the element-wise min of two SparseTensors. |
SparseSplit <T extends TType > | Split a `SparseTensor` into `num_split` tensors along one dimension. |
SparseTensorDenseAdd <U extends TType > | Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. |
SparseTensorDenseMatMul <U extends TType > | Multiply SparseTensor (of rank 2) "A" by dense matrix "B". |
SparseTensorSliceDataset | Creates a dataset that splits a SparseTensor into elements row-wise. |
SparseTensorToCSRSparseMatrix | Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. |
SparseToDense <U extends TType > | Converts a sparse representation into a dense tensor. |
SparseToSparseSetOperation <T extends TType > | Applies set operation along last dimension of 2 `SparseTensor` inputs. |
Spence <T extends TNumber > | |
Split <T extends TType > | Splits a tensor into `num_split` tensors along one dimension. |
SplitV <T extends TType > | Splits a tensor into `num_split` tensors along one dimension. |
SqlDataset | Creates a dataset that executes a SQL query and emits rows of the result set. |
Sqrt <T extends TType > | Computes square root of x element-wise. |
SqrtGrad <T extends TType > | Computes the gradient for the sqrt of `x` wrt its input. |
Sqrtm <T extends TType > | Computes the matrix square root of one or more square matrices: matmul(sqrtm(A), sqrtm(A)) = A The input matrix should be invertible. |
Square <T extends TType > | Computes square of x element-wise. |
SquaredDifference <T extends TType > | Returns conj(x - y)(x - y) element-wise. |
Squeeze <T extends TType > | Removes dimensions of size 1 from the shape of a tensor. |
Stack <T extends TType > | Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. |
שָׁלָב | Stage values similar to a lightweight Enqueue. |
StageClear | Op removes all elements in the underlying container. |
StagePeek | Op peeks at the values at the specified index. |
StageSize | Op returns the number of elements in the underlying container. |
StatefulRandomBinomial <V extends TNumber > | |
StatefulStandardNormal <U extends TType > | Outputs random values from a normal distribution. |
StatefulTruncatedNormal <U extends TType > | Outputs random values from a truncated normal distribution. |
StatefulUniform <U extends TType > | Outputs random values from a uniform distribution. |
StatefulUniformFullInt <U extends TType > | Outputs random integers from a uniform distribution. |
StatefulUniformInt <U extends TType > | Outputs random integers from a uniform distribution. |
StatelessMultinomial <V extends TNumber > | Draws samples from a multinomial distribution. |
StatelessParameterizedTruncatedNormal <V extends TNumber > | |
StatelessRandomBinomial <W extends TNumber > | Outputs deterministic pseudorandom random numbers from a binomial distribution. |
StatelessRandomGamma <V extends TNumber > | Outputs deterministic pseudorandom random numbers from a gamma distribution. |
StatelessRandomGetKeyCounterAlg | Picks the best algorithm based on device, and scrambles seed into key and counter. |
StatelessRandomNormal <V extends TNumber > | Outputs deterministic pseudorandom values from a normal distribution. |
StatelessRandomNormalV2 <U extends TNumber > | Outputs deterministic pseudorandom values from a normal distribution. |
StatelessRandomPoisson <W extends TNumber > | Outputs deterministic pseudorandom random numbers from a Poisson distribution. |
StatelessRandomUniform <V extends TNumber > | Outputs deterministic pseudorandom random values from a uniform distribution. |
StatelessRandomUniformFullInt <V extends TNumber > | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformFullIntV2 <U extends TNumber > | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformInt <V extends TNumber > | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformIntV2 <U extends TNumber > | Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformV2 <U extends TNumber > | Outputs deterministic pseudorandom random values from a uniform distribution. |
StatelessSampleDistortedBoundingBox <T extends TNumber > | Generate a randomly distorted bounding box for an image deterministically. |
StatelessTruncatedNormal <V extends TNumber > | Outputs deterministic pseudorandom values from a truncated normal distribution. |
StatelessTruncatedNormalV2 <U extends TNumber > | Outputs deterministic pseudorandom values from a truncated normal distribution. |
StaticRegexFullMatch | Check if the input matches the regex pattern. |
StaticRegexReplace | Replaces the match of pattern in input with rewrite. |
StatsAggregatorHandle | |
StatsAggregatorSetSummaryWriter | Set a summary_writer_interface to record statistics using given stats_aggregator. |
StatsAggregatorSummary | Produces a summary of any statistics recorded by the given statistics manager. |
StopGradient <T extends TType > | Stops gradient computation. |
StridedSlice <T extends TType > | Return a strided slice from `input`. |
StridedSliceAssign <T extends TType > | Assign `value` to the sliced l-value reference of `ref`. |
StridedSliceGrad <U extends TType > | Returns the gradient of `StridedSlice`. |
StringFormat | Formats a string template using a list of tensors. |
StringLength | String lengths of `input`. |
StringNGrams <T extends TNumber > | Creates ngrams from ragged string data. |
StringSplit | Split elements of `source` based on `sep` into a `SparseTensor`. |
לְהִתְפַּשֵׁט | Strip leading and trailing whitespaces from the Tensor. |
Sub <T extends TType > | Returns x - y element-wise. |
Substr | Return substrings from `Tensor` of strings. |
Sum <T extends TType > | Computes the sum of elements across dimensions of a tensor. |
SummaryWriter | |
Svd <T extends TType > | Computes the eigen decomposition of a batch of self-adjoint matrices (Note: Only real inputs are supported). |
SwitchCond <T extends TType > | Forwards `data` to the output port determined by `pred`. |
TPUCompilationResult | Returns the result of a TPU compilation. |
TPUEmbeddingActivations | An op enabling differentiation of TPU Embeddings. |
TPUReplicateMetadata | Metadata indicating how the TPU computation should be replicated. |
TPUReplicatedInput <T extends TType > | Connects N inputs to an N-way replicated TPU computation. |
TPUReplicatedOutput <T extends TType > | Connects N outputs from an N-way replicated TPU computation. |
TakeDataset | Creates a dataset that contains `count` elements from the `input_dataset`. |
TakeManySparseFromTensorsMap <T extends TType > | Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. |
Tan <T extends TType > | Computes tan of x element-wise. |
Tanh <T extends TType > | Computes hyperbolic tangent of `x` element-wise. |
TanhGrad <T extends TType > | Computes the gradient for the tanh of `x` wrt its input. |
TemporaryVariable <T extends TType > | Returns a tensor that may be mutated, but only persists within a single step. |
TensorArray | An array of Tensors of given size. |
TensorArrayClose | Delete the TensorArray from its resource container. |
TensorArrayConcat <T extends TType > | Concat the elements from the TensorArray into value `value`. |
TensorArrayGather <T extends TType > | Gather specific elements from the TensorArray into output `value`. |
TensorArrayGrad | Creates a TensorArray for storing the gradients of values in the given handle. |
TensorArrayGradWithShape | Creates a TensorArray for storing multiple gradients of values in the given handle. |
TensorArrayPack <T extends TType > | |
TensorArrayRead <T extends TType > | Read an element from the TensorArray into output `value`. |
TensorArrayScatter | Scatter the data from the input value into specific TensorArray elements. |
TensorArraySize | Get the current size of the TensorArray. |
TensorArraySplit | Split the data from the input value into TensorArray elements. |
TensorArrayUnpack | |
TensorArrayWrite | Push an element onto the tensor_array. |
TensorDataset | Creates a dataset that emits `components` as a tuple of tensors once. |
TensorDiag <T extends TType > | Returns a diagonal tensor with a given diagonal values. |
TensorDiagPart <T extends TType > | Returns the diagonal part of the tensor. |
TensorForestCreateTreeVariable | Creates a tree resource and returns a handle to it. |
TensorForestTreeDeserialize | Deserializes a proto into the tree handle |
TensorForestTreeIsInitializedOp | Checks whether a tree has been initialized. |
TensorForestTreePredict | Output the logits for the given input data |
TensorForestTreeResourceHandleOp | Creates a handle to a TensorForestTreeResource |
TensorForestTreeSerialize | Serializes the tree handle to a proto |
TensorForestTreeSize | Get the number of nodes in a tree |
TensorListConcat <U extends TType > | Concats all tensors in the list along the 0th dimension. |
TensorListConcatLists | |
TensorListElementShape <T extends TNumber > | The shape of the elements of the given list, as a tensor. |
TensorListFromTensor | Creates a TensorList which, when stacked, has the value of `tensor`. |
TensorListGather <T extends TType > | Creates a Tensor by indexing into the TensorList. |
TensorListGetItem <T extends TType > | |
TensorListLength | Returns the number of tensors in the input tensor list. |
TensorListPopBack <T extends TType > | Returns the last element of the input list as well as a list with all but that element. |
TensorListPushBack | Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. |
TensorListPushBackBatch | |
TensorListReserve | List of the given size with empty elements. |
TensorListResize | Resizes the list. |
TensorListScatter | Creates a TensorList by indexing into a Tensor. |
TensorListScatterIntoExistingList | Scatters tensor at indices in an input list. |
TensorListSetItem | |
TensorListSplit | Splits a tensor into a list. |
TensorListStack <T extends TType > | Stacks all tensors in the list. |
TensorMapErase | Returns a tensor map with item from given key erased. |
TensorMapHasKey | Returns whether the given key exists in the map. |
TensorMapInsert | Returns a map that is the 'input_handle' with the given key-value pair inserted. |
TensorMapLookup <U extends TType > | Returns the value from a given key in a tensor map. |
TensorMapSize | Returns the number of tensors in the input tensor map. |
TensorMapStackKeys <T extends TType > | Returns a Tensor stack of all keys in a tensor map. |
TensorScatterNdAdd <T extends TType > | Adds sparse `updates` to an existing tensor according to `indices`. |
TensorScatterNdMax <T extends TType > | |
TensorScatterNdMin <T extends TType > | |
TensorScatterNdSub <T extends TType > | Subtracts sparse `updates` from an existing tensor according to `indices`. |
TensorScatterNdUpdate <T extends TType > | Scatter `updates` into an existing tensor according to `indices`. |
TensorSliceDataset | Creates a dataset that emits each dim-0 slice of `components` once. |
TensorStridedSliceUpdate <T extends TType > | Assign `value` to the sliced l-value reference of `input`. |
TensorSummary | Outputs a `Summary` protocol buffer with a tensor and per-plugin data. |
TextLineDataset | Creates a dataset that emits the lines of one or more text files. |
TextLineReader | A Reader that outputs the lines of a file delimited by '\n'. |
TfRecordDataset | Creates a dataset that emits the records from one or more TFRecord files. |
TfRecordReader | A Reader that outputs the records from a TensorFlow Records file. |
ThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
ThreadPoolHandle | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
Tile <T extends TType > | Constructs a tensor by tiling a given tensor. |
TileGrad <T extends TType > | Returns the gradient of `Tile`. |
Timestamp | Provides the time since epoch in seconds. |
ToBool | Converts a tensor to a scalar predicate. |
ToHashBucket | Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToHashBucketFast | Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToHashBucketStrong | Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToNumber <T extends TNumber > | Converts each string in the input Tensor to the specified numeric type. |
TopK <T extends TNumber > | Finds values and indices of the `k` largest elements for the last dimension. |
TopKUnique | Returns the TopK unique values in the array in sorted order. |
TopKWithUnique | Returns the TopK values in the array in sorted order. |
Transpose <T extends TType > | Shuffle dimensions of x according to a permutation. |
TriangularSolve <T extends TType > | Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. |
TridiagonalMatMul <T extends TType > | Calculate product with tridiagonal matrix. |
TridiagonalSolve <T extends TType > | Solves tridiagonal systems of equations. |
TruncateDiv <T extends TType > | Returns x / y element-wise for integer types. |
TruncateMod <T extends TNumber > | Returns element-wise remainder of division. |
TruncatedNormal <U extends TNumber > | Outputs random values from a truncated normal distribution. |
TryRpc | Perform batches of RPC requests. |
Unbatch <T extends TType > | Reverses the operation of Batch for a single output Tensor. |
UnbatchDataset | A dataset that splits the elements of its input into multiple elements. |
UnbatchGrad <T extends TType > | Gradient of Unbatch. |
UncompressElement | Uncompresses a compressed dataset element. |
UnicodeDecode <T extends TNumber > | Decodes each string in `input` into a sequence of Unicode code points. |
UnicodeDecodeWithOffsets <T extends TNumber > | Decodes each string in `input` into a sequence of Unicode code points. |
UnicodeEncode | Encode a tensor of ints into unicode strings. |
UnicodeScript | Determine the script codes of a given tensor of Unicode integer code points. |
UnicodeTranscode | Transcode the input text from a source encoding to a destination encoding. |
UniformCandidateSampler | Generates labels for candidate sampling with a uniform distribution. |
Unique <T extends TType , V extends TNumber > | Finds unique elements along an axis of a tensor. |
UniqueDataset | Creates a dataset that contains the unique elements of `input_dataset`. |
UniqueWithCounts <T extends TType , V extends TNumber > | Finds unique elements along an axis of a tensor. |
UnravelIndex <T extends TNumber > | Converts an array of flat indices into a tuple of coordinate arrays. |
UnsortedSegmentJoin | Joins the elements of `inputs` based on `segment_ids`. |
UnsortedSegmentMax <T extends TNumber > | Computes the maximum along segments of a tensor. |
UnsortedSegmentMin <T extends TNumber > | Computes the minimum along segments of a tensor. |
UnsortedSegmentProd <T extends TType > | Computes the product along segments of a tensor. |
UnsortedSegmentSum <T extends TType > | Computes the sum along segments of a tensor. |
Unstack <T extends TType > | Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. |
Unstage | Op is similar to a lightweight Dequeue. |
UnwrapDatasetVariant | |
עֶלִיוֹן | Converts all lowercase characters into their respective uppercase replacements. |
UpperBound <U extends TNumber > | Applies upper_bound(sorted_search_values, values) along each row. |
VarHandleOp | Creates a handle to a Variable resource. |
VarIsInitializedOp | Checks whether a resource handle-based variable has been initialized. |
Variable <T extends TType > | Holds state in the form of a tensor that persists across steps. |
VariableShape <T extends TNumber > | Returns the shape of the variable pointed to by `resource`. |
אֵיפֹה | Returns locations of nonzero / true values in a tensor. |
WholeFileReader | A Reader that outputs the entire contents of a file as a value. |
WindowDataset | Combines (nests of) input elements into a dataset of (nests of) windows. |
WorkerHeartbeat | Worker heartbeat op. |
WrapDatasetVariant | |
WriteAudioSummary | Writes an audio summary. |
WriteFile | Writes contents to the file at input filename. |
WriteGraphSummary | Writes a graph summary. |
WriteHistogramSummary | Writes a histogram summary. |
WriteImageSummary | Writes an image summary. |
WriteRawProtoSummary | Writes a serialized proto summary. |
WriteScalarSummary | Writes a scalar summary. |
WriteSummary | Writes a tensor summary. |
Xdivy <T extends TType > | Returns 0 if x == 0, and x / y otherwise, elementwise. |
XlaRecvFromHost <T extends TType > | An op to receive a tensor from the host. |
XlaSendToHost | An op to send a tensor to the host. |
XlaSetBound | Set a bound for the given input value as a hint to Xla compiler, returns the same value. |
XlaSpmdFullToShardShape <T extends TType > | An op used by XLA SPMD partitioner to switch from automatic partitioning to manual partitioning. |
XlaSpmdShardToFullShape <T extends TType > | An op used by XLA SPMD partitioner to switch from manual partitioning to automatic partitioning. |
Xlog1py <T extends TType > | Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. |
Xlogy <T extends TType > | Returns 0 if x == 0, and x * log(y) otherwise, elementwise. |
ZerosLike <T extends TType > | Returns a tensor of zeros with the same shape and type as x. |
Zeta <T extends TNumber > | Compute the Hurwitz zeta function \\(\zeta(x, q)\\). |
ZipDataset | Creates a dataset that zips together `input_datasets`. |
erfinv <T extends TNumber > | |