Abort |
Raise a exception to abort the process when called. |
Abs<T extends TNumber> |
Computes the absolute value of a tensor. |
AccumulateN<T extends TType> |
Returns the element-wise sum of a list of tensors. |
AccumulatorApplyGradient |
Applies a gradient to a given accumulator. |
AccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators. |
AccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step. |
AccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator. |
Acos<T extends TType> |
Computes acos of x element-wise. |
Acosh<T extends TType> |
Computes inverse hyperbolic cosine of x element-wise. |
Add<T extends TType> |
Returns x + y element-wise. |
AddManySparseToTensorsMap |
Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. |
AddN<T extends TType> |
Add all input tensors element wise. |
AddSparseToTensorsMap |
Add a `SparseTensor` to a `SparseTensorsMap` return its handle. |
AdjustContrast<T extends TNumber> |
Adjust the contrast of one or more images. |
AdjustHue<T extends TNumber> |
Adjust the hue of one or more images. |
AdjustSaturation<T extends TNumber> |
Adjust the saturation of one or more images. |
All |
Computes the "logical and" of elements across dimensions of a tensor. |
AllCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution. |
AllReduce<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape. |
AllToAll<T extends TType> |
An Op to exchange data across TPU replicas. |
Angle<U extends TNumber> |
Returns the argument of a complex number. |
AnonymousIterator |
A container for an iterator resource. |
AnonymousMemoryCache |
|
AnonymousMultiDeviceIterator |
A container for a multi device iterator resource. |
AnonymousRandomSeedGenerator |
|
AnonymousSeedGenerator |
|
Any |
Computes the "logical or" of elements across dimensions of a tensor. |
ApplyAdaMax<T extends TType> |
Update '*var' according to the AdaMax algorithm. |
ApplyAdadelta<T extends TType> |
Update '*var' according to the adadelta scheme. |
ApplyAdagrad<T extends TType> |
Update '*var' according to the adagrad scheme. |
ApplyAdagradDa<T extends TType> |
Update '*var' according to the proximal adagrad scheme. |
ApplyAdagradV2<T extends TType> |
Update '*var' according to the adagrad scheme. |
ApplyAdam<T extends TType> |
Update '*var' according to the Adam algorithm. |
ApplyAddSign<T extends TType> |
Update '*var' according to the AddSign update. |
ApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm. |
ApplyFtrl<T extends TType> |
Update '*var' according to the Ftrl-proximal scheme. |
ApplyGradientDescent<T extends TType> |
Update '*var' by subtracting 'alpha' * 'delta' from it. |
ApplyMomentum<T extends TType> |
Update '*var' according to the momentum scheme. |
ApplyPowerSign<T extends TType> |
Update '*var' according to the AddSign update. |
ApplyProximalAdagrad<T extends TType> |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
ApplyProximalGradientDescent<T extends TType> |
Update '*var' as FOBOS algorithm with fixed learning rate. |
ApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm. |
ApproximateEqual |
Returns the truth value of abs(x-y) < tolerance element-wise. |
ArgMax<V extends TNumber> |
Returns the index with the largest value across dimensions of a tensor. |
ArgMin<V extends TNumber> |
Returns the index with the smallest value across dimensions of a tensor. |
AsString |
Converts each entry in the given tensor to strings. |
Asin<T extends TType> |
Computes the trignometric inverse sine of x element-wise. |
Asinh<T extends TType> |
Computes inverse hyperbolic sine of x element-wise. |
AssertCardinalityDataset |
|
AssertNextDataset |
|
AssertThat |
Asserts that the given condition is true. |
Assign<T extends TType> |
Update 'ref' by assigning 'value' to it. |
AssignAdd<T extends TType> |
Update 'ref' by adding 'value' to it. |
AssignAddVariableOp |
Adds a value to the current value of a variable. |
AssignSub<T extends TType> |
Update 'ref' by subtracting 'value' from it. |
AssignSubVariableOp |
Subtracts a value from the current value of a variable. |
AssignVariableOp |
Assigns a new value to a variable. |
Atan<T extends TType> |
Computes the trignometric inverse tangent of x element-wise. |
Atan2<T extends TNumber> |
Computes arctangent of `y/x` element-wise, respecting signs of the arguments. |
Atanh<T extends TType> |
Computes inverse hyperbolic tangent of x element-wise. |
AudioSpectrogram |
Produces a visualization of audio data over time. |
AudioSummary |
Outputs a `Summary` protocol buffer with audio. |
AutoShardDataset |
Creates a dataset that shards the input dataset. |
AvgPool<T extends TNumber> |
Performs average pooling on the input. |
AvgPool3d<T extends TNumber> |
Performs 3D average pooling on the input. |
AvgPool3dGrad<T extends TNumber> |
Computes gradients of average pooling function. |
AvgPoolGrad<T extends TNumber> |
Computes gradients of the average pooling function. |
BandPart<T extends TType> |
Copy a tensor setting everything outside a central band in each innermost matrix to zero. |
BandedTriangularSolve<T extends TType> |
|
Barrier |
Defines a barrier that persists across different graph executions. |
BarrierClose |
Closes the given barrier. |
BarrierIncompleteSize |
Computes the number of incomplete elements in the given barrier. |
BarrierInsertMany |
For each key, assigns the respective value to the specified component. |
BarrierReadySize |
Computes the number of complete elements in the given barrier. |
BarrierTakeMany |
Takes the given number of completed elements from a barrier. |
Batch |
Batches all input tensors nondeterministically. |
BatchCholesky<T extends TNumber> |
|
BatchCholeskyGrad<T extends TNumber> |
|
BatchDataset |
Creates a dataset that batches `batch_size` elements from `input_dataset`. |
BatchFft |
|
BatchFft2d |
|
BatchFft3d |
|
BatchIfft |
|
BatchIfft2d |
|
BatchIfft3d |
|
BatchMatMul<T extends TType> |
Multiplies slices of two tensors in batches. |
BatchMatrixBandPart<T extends TType> |
|
BatchMatrixDeterminant<T extends TType> |
|
BatchMatrixDiag<T extends TType> |
|
BatchMatrixDiagPart<T extends TType> |
|
BatchMatrixInverse<T extends TNumber> |
|
BatchMatrixSetDiag<T extends TType> |
|
BatchMatrixSolve<T extends TNumber> |
|
BatchMatrixSolveLs<T extends TNumber> |
|
BatchMatrixTriangularSolve<T extends TNumber> |
|
BatchNormWithGlobalNormalization<T extends TType> |
Batch normalization. |
BatchNormWithGlobalNormalizationGrad<T extends TType> |
Gradients for batch normalization. |
BatchSelfAdjointEig<T extends TNumber> |
|
BatchSvd<T extends TType> |
|
BatchToSpace<T extends TType> |
BatchToSpace for 4-D tensors of type T. |
BatchToSpaceNd<T extends TType> |
BatchToSpace for N-D tensors of type T. |
BesselI0<T extends TNumber> |
|
BesselI0e<T extends TNumber> |
|
BesselI1<T extends TNumber> |
|
BesselI1e<T extends TNumber> |
|
BesselJ0<T extends TNumber> |
|
BesselJ1<T extends TNumber> |
|
BesselK0<T extends TNumber> |
|
BesselK0e<T extends TNumber> |
|
BesselK1<T extends TNumber> |
|
BesselK1e<T extends TNumber> |
|
BesselY0<T extends TNumber> |
|
BesselY1<T extends TNumber> |
|
Betainc<T extends TNumber> |
Compute the regularized incomplete beta integral \\(I_x(a, b)\\). |
BiasAdd<T extends TType> |
Adds `bias` to `value`. |
BiasAddGrad<T extends TType> |
The backward operation for "BiasAdd" on the "bias" tensor. |
Bincount<T extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
Bitcast<U extends TType> |
Bitcasts a tensor from one type to another without copying data. |
BitwiseAnd<T extends TNumber> |
Elementwise computes the bitwise AND of `x` and `y`. |
BitwiseOr<T extends TNumber> |
Elementwise computes the bitwise OR of `x` and `y`. |
BitwiseXor<T extends TNumber> |
Elementwise computes the bitwise XOR of `x` and `y`. |
BlockLSTM<T extends TNumber> |
Computes the LSTM cell forward propagation for all the time steps. |
BlockLSTMGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for the entire time sequence. |
BoostedTreesAggregateStats |
Aggregates the summary of accumulated stats for the batch. |
BoostedTreesBucketize |
Bucketize each feature based on bucket boundaries. |
BoostedTreesCalculateBestFeatureSplit |
Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesCalculateBestFeatureSplitV2 |
Calculates gains for each feature and returns the best possible split information for each node. |
BoostedTreesCalculateBestGainsPerFeature |
Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesCenterBias |
Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. |
BoostedTreesCreateEnsemble |
Creates a tree ensemble model and returns a handle to it. |
BoostedTreesCreateQuantileStreamResource |
Create the Resource for Quantile Streams. |
BoostedTreesDeserializeEnsemble |
Deserializes a serialized tree ensemble config and replaces current tree
ensemble. |
BoostedTreesEnsembleResourceHandleOp |
Creates a handle to a BoostedTreesEnsembleResource
|
BoostedTreesExampleDebugOutputs |
Debugging/model interpretability outputs for each example. |
BoostedTreesFlushQuantileSummaries |
Flush the quantile summaries from each quantile stream resource. |
BoostedTreesGetEnsembleStates |
Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. |
BoostedTreesMakeQuantileSummaries |
Makes the summary of quantiles for the batch. |
BoostedTreesMakeStatsSummary |
Makes the summary of accumulated stats for the batch. |
BoostedTreesPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the logits. |
BoostedTreesQuantileStreamResourceAddSummaries |
Add the quantile summaries to each quantile stream resource. |
BoostedTreesQuantileStreamResourceDeserialize |
Deserialize bucket boundaries and ready flag into current QuantileAccumulator. |
BoostedTreesQuantileStreamResourceFlush |
Flush the summaries for a quantile stream resource. |
BoostedTreesQuantileStreamResourceGetBucketBoundaries |
Generate the bucket boundaries for each feature based on accumulated summaries. |
BoostedTreesQuantileStreamResourceHandleOp |
Creates a handle to a BoostedTreesQuantileStreamResource. |
BoostedTreesSerializeEnsemble |
Serializes the tree ensemble to a proto. |
BoostedTreesSparseAggregateStats |
Aggregates the summary of accumulated stats for the batch. |
BoostedTreesSparseCalculateBestFeatureSplit |
Calculates gains for each feature and returns the best possible split information for the feature. |
BoostedTreesTrainingPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the update to cached logits. |
BoostedTreesUpdateEnsemble |
Updates the tree ensemble by either adding a layer to the last tree being grown
or by starting a new tree. |
BoostedTreesUpdateEnsembleV2 |
Updates the tree ensemble by adding a layer to the last tree being grown
or by starting a new tree. |
BroadcastDynamicShape<T extends TNumber> |
Return the shape of s0 op s1 with broadcast. |
BroadcastGradientArgs<T extends TNumber> |
Return the reduction indices for computing gradients of s0 op s1 with broadcast. |
BroadcastHelper<T extends TType> |
Helper operator for performing XLA-style broadcasts
Broadcasts `lhs` and `rhs` to the same rank, by adding size 1 dimensions to
whichever of `lhs` and `rhs` has the lower rank, using XLA's broadcasting rules
for binary operators. |
BroadcastRecv<T extends TType> |
Receives a tensor value broadcast from another device. |
BroadcastSend<T extends TType> |
Broadcasts a tensor value to one or more other devices. |
BroadcastTo<T extends TType> |
Broadcast an array for a compatible shape. |
Bucketize |
Bucketizes 'input' based on 'boundaries'. |
BytesProducedStatsDataset |
Records the bytes size of each element of `input_dataset` in a StatsAggregator. |
CSRSparseMatrixComponents<T extends TType> |
Reads out the CSR components at batch `index`. |
CSRSparseMatrixToDense<T extends TType> |
Convert a (possibly batched) CSRSparseMatrix to dense. |
CSRSparseMatrixToSparseTensor<T extends TType> |
Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. |
CSVDataset |
|
CSVDatasetV2 |
|
CTCLossV2 |
Calculates the CTC Loss (log probability) for each batch entry. |
CacheDataset |
Creates a dataset that caches elements from `input_dataset`. |
CacheDatasetV2 |
|
Cast<U extends TType> |
Cast x of type SrcT to y of DstT. |
Ceil<T extends TNumber> |
Returns element-wise smallest integer not less than x. |
CheckNumerics<T extends TNumber> |
Checks a tensor for NaN, -Inf and +Inf values. |
Cholesky<T extends TType> |
Computes the Cholesky decomposition of one or more square matrices. |
CholeskyGrad<T extends TNumber> |
Computes the reverse mode backpropagated gradient of the Cholesky algorithm. |
ChooseFastestDataset |
|
ClipByValue<T extends TType> |
Clips tensor values to a specified min and max. |
CloseSummaryWriter |
|
ClusterOutput<T extends TType> |
Operator that connects the output of an XLA computation to other consumer graph nodes. |
CollectiveGather<T extends TNumber> |
Mutually accumulates multiple tensors of identical type and shape. |
CollectivePermute<T extends TType> |
An Op to permute tensors across replicated TPU instances. |
CombinedNonMaxSuppression |
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across
all classes. |
CompareAndBitpack |
Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. |
CompilationResult |
Returns the result of a TPU compilation. |
CompileSucceededAssert |
Asserts that compilation succeeded. |
Complex<U extends TType> |
Converts two real numbers to a complex number. |
ComplexAbs<U extends TNumber> |
Computes the complex absolute value of a tensor. |
CompressElement |
Compresses a dataset element. |
ComputeAccidentalHits |
Computes the ids of the positions in sampled_candidates that match true_labels. |
ComputeBatchSize |
Computes the static batch size of a dataset sans partial batches. |
Concat<T extends TType> |
Concatenates tensors along one dimension. |
ConcatenateDataset |
Creates a dataset that concatenates `input_dataset` with `another_dataset`. |
ConditionalAccumulator |
A conditional accumulator for aggregating gradients. |
ConfigureDistributedTPU |
Sets up the centralized structures for a distributed TPU system. |
ConfigureTPUEmbedding |
Sets up TPUEmbedding in a distributed TPU system. |
Conj<T extends TType> |
Returns the complex conjugate of a complex number. |
ConjugateTranspose<T extends TType> |
Shuffle dimensions of x according to a permutation and conjugate the result. |
Constant<T extends TType> |
An operator producing a constant value. |
ConsumeMutexLock |
This op consumes a lock created by `MutexLock`. |
ControlTrigger |
Does nothing. |
Conv<T extends TType> |
Wraps the XLA ConvGeneralDilated operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
. |
Conv2d<T extends TNumber> |
Computes a 2-D convolution given 4-D `input` and `filter` tensors. |
Conv2dBackpropFilter<T extends TNumber> |
Computes the gradients of convolution with respect to the filter. |
Conv2dBackpropInput<T extends TNumber> |
Computes the gradients of convolution with respect to the input. |
Conv3d<T extends TNumber> |
Computes a 3-D convolution given 5-D `input` and `filter` tensors. |
Conv3dBackpropFilter<T extends TNumber> |
Computes the gradients of 3-D convolution with respect to the filter. |
Conv3dBackpropInput<U extends TNumber> |
Computes the gradients of 3-D convolution with respect to the input. |
Copy<T extends TType> |
Copy a tensor from CPU-to-CPU or GPU-to-GPU. |
CopyHost<T extends TType> |
Copy a tensor to host. |
Cos<T extends TType> |
Computes cos of x element-wise. |
Cosh<T extends TType> |
Computes hyperbolic cosine of x element-wise. |
CountUpTo<T extends TNumber> |
Increments 'ref' until it reaches 'limit'. |
CreateSummaryDbWriter |
|
CreateSummaryFileWriter |
|
CropAndResize |
Extracts crops from the input image tensor and resizes them. |
CropAndResizeGradBoxes |
Computes the gradient of the crop_and_resize op wrt the input boxes tensor. |
CropAndResizeGradImage<T extends TNumber> |
Computes the gradient of the crop_and_resize op wrt the input image tensor. |
Cross<T extends TNumber> |
Compute the pairwise cross product. |
CrossReplicaSum<T extends TNumber> |
An Op to sum inputs across replicated TPU instances. |
CtcBeamSearchDecoder<T extends TNumber> |
Performs beam search decoding on the logits given in input. |
CtcGreedyDecoder<T extends TNumber> |
Performs greedy decoding on the logits given in inputs. |
CtcLoss<T extends TNumber> |
Calculates the CTC Loss (log probability) for each batch entry. |
CudnnRNN<T extends TNumber> |
A RNN backed by cuDNN. |
CudnnRNNBackprop<T extends TNumber> |
Backprop step of CudnnRNNV3. |
CudnnRNNCanonicalToParams<T extends TNumber> |
Converts CudnnRNN params from canonical form to usable form. |
CudnnRNNParamsToCanonical<T extends TNumber> |
Retrieves CudnnRNN params in canonical form. |
CudnnRnnParamsSize<U extends TNumber> |
Computes size of weights that can be used by a Cudnn RNN model. |
Cumprod<T extends TType> |
Compute the cumulative product of the tensor `x` along `axis`. |
Cumsum<T extends TType> |
Compute the cumulative sum of the tensor `x` along `axis`. |
CumulativeLogsumexp<T extends TNumber> |
Compute the cumulative product of the tensor `x` along `axis`. |
DataFormatDimMap<T extends TNumber> |
Returns the dimension index in the destination data format given the one in
the source data format. |
DataFormatVecPermute<T extends TNumber> |
Permute input tensor from `src_format` to `dst_format`. |
DataServiceDataset |
|
DatasetCardinality |
Returns the cardinality of `input_dataset`. |
DatasetFromGraph |
Creates a dataset from the given `graph_def`. |
DatasetToGraph |
Returns a serialized GraphDef representing `input_dataset`. |
DatasetToSingleElement |
Outputs the single element from the given dataset. |
DatasetToTFRecord |
Writes the given dataset to the given file using the TFRecord format. |
DatasetToTfRecord |
Writes the given dataset to the given file using the TFRecord format. |
Dawsn<T extends TNumber> |
|
DebugGradientIdentity<T extends TType> |
Identity op for gradient debugging. |
DebugGradientRefIdentity<T extends TType> |
Identity op for gradient debugging. |
DebugIdentity<T extends TType> |
Debug Identity V2 Op. |
DebugNanCount |
Debug NaN Value Counter Op. |
DebugNumericsSummary<U extends TNumber> |
Debug Numeric Summary V2 Op. |
DecodeAndCropJpeg |
Decode and Crop a JPEG-encoded image to a uint8 tensor. |
DecodeBase64 |
Decode web-safe base64-encoded strings. |
DecodeBmp |
Decode the first frame of a BMP-encoded image to a uint8 tensor. |
DecodeCompressed |
Decompress strings. |
DecodeCsv |
Convert CSV records to tensors. |
DecodeGif |
Decode the frame(s) of a GIF-encoded image to a uint8 tensor. |
DecodeImage<T extends TNumber> |
Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. |
DecodeJpeg |
Decode a JPEG-encoded image to a uint8 tensor. |
DecodeJsonExample |
Convert JSON-encoded Example records to binary protocol buffer strings. |
DecodePaddedRaw<T extends TNumber> |
Reinterpret the bytes of a string as a vector of numbers. |
DecodePng<T extends TNumber> |
Decode a PNG-encoded image to a uint8 or uint16 tensor. |
DecodeProto |
The op extracts fields from a serialized protocol buffers message into tensors. |
DecodeRaw<T extends TType> |
Reinterpret the bytes of a string as a vector of numbers. |
DecodeWav |
Decode a 16-bit PCM WAV file to a float tensor. |
DeepCopy<T extends TType> |
Makes a copy of `x`. |
DeleteIterator |
A container for an iterator resource. |
DeleteMemoryCache |
|
DeleteMultiDeviceIterator |
A container for an iterator resource. |
DeleteRandomSeedGenerator |
|
DeleteSeedGenerator |
|
DeleteSessionTensor |
Delete the tensor specified by its handle in the session. |
DenseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
DenseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a tf.tensor input. |
DenseToCSRSparseMatrix |
Converts a dense tensor to a (possibly batched) CSRSparseMatrix. |
DenseToDenseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 `Tensor` inputs. |
DenseToSparseBatchDataset |
Creates a dataset that batches input elements into a SparseTensor. |
DenseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of `Tensor` and `SparseTensor`. |
DepthToSpace<T extends TType> |
DepthToSpace for tensors of type T. |
DepthwiseConv2dNative<T extends TNumber> |
Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. |
DepthwiseConv2dNativeBackpropFilter<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the filter. |
DepthwiseConv2dNativeBackpropInput<T extends TNumber> |
Computes the gradients of depthwise convolution with respect to the input. |
Dequantize |
Takes the packed uint32 input and unpacks the input to uint8 to do
Dequantization on device. |
DeserializeIterator |
Converts the given variant tensor to an iterator and stores it in the given resource. |
DeserializeManySparse<T extends TType> |
Deserialize and concatenate `SparseTensors` from a serialized minibatch. |
DeserializeSparse<U extends TType> |
Deserialize `SparseTensor` objects. |
DestroyResourceOp |
Deletes the resource specified by the handle. |
DestroyTemporaryVariable<T extends TType> |
Destroys the temporary variable and returns its final value. |
Det<T extends TType> |
Computes the determinant of one or more square matrices. |
DeviceIndex |
Return the index of device the op runs. |
Digamma<T extends TNumber> |
Computes Psi, the derivative of Lgamma (the log of the absolute value of
`Gamma(x)`), element-wise. |
Dilation2d<T extends TNumber> |
Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. |
Dilation2dBackpropFilter<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the filter. |
Dilation2dBackpropInput<T extends TNumber> |
Computes the gradient of morphological 2-D dilation with respect to the input. |
DirectedInterleaveDataset |
A substitute for `InterleaveDataset` on a fixed list of `N` datasets. |
Div<T extends TType> |
Returns x / y element-wise. |
DivNoNan<T extends TType> |
Returns 0 if the denominator is zero. |
Dot<T extends TType> |
Wraps the XLA DotGeneral operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
. |
DrawBoundingBoxes<T extends TNumber> |
Draw bounding boxes on a batch of images. |
DummyIterationCounter |
|
DummyMemoryCache |
|
DummySeedGenerator |
|
DynamicPartition<T extends TType> |
Partitions `data` into `num_partitions` tensors using indices from `partitions`. |
DynamicSlice<T extends TType> |
Wraps the XLA DynamicSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice
. |
DynamicStitch<T extends TType> |
Interleave the values from the `data` tensors into a single tensor. |
DynamicUpdateSlice<T extends TType> |
Wraps the XLA DynamicUpdateSlice operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice
. |
EditDistance |
Computes the (possibly normalized) Levenshtein Edit Distance. |
Eig<U extends TType> |
Computes the eigen decomposition of one or more square matrices. |
Einsum<T extends TType> |
An op which supports basic einsum op with 2 inputs and 1 output. |
Elu<T extends TNumber> |
Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. |
EluGrad<T extends TNumber> |
Computes gradients for the exponential linear (Elu) operation. |
EmbeddingActivations |
An op enabling differentiation of TPU Embeddings. |
Empty<T extends TType> |
Creates a tensor with the given shape. |
EmptyTensorList |
Creates and returns an empty tensor list. |
EmptyTensorMap |
Creates and returns an empty tensor map. |
EncodeBase64 |
Encode strings into web-safe base64 format. |
EncodeJpeg |
JPEG-encode an image. |
EncodeJpegVariableQuality |
JPEG encode input image with provided compression quality. |
EncodePng |
PNG-encode an image. |
EncodeProto |
The op serializes protobuf messages provided in the input tensors. |
EncodeWav |
Encode audio data using the WAV file format. |
EnqueueTPUEmbeddingIntegerBatch |
An op that enqueues a list of input batch tensors to TPUEmbedding. |
EnqueueTPUEmbeddingRaggedTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup(). |
EnqueueTPUEmbeddingSparseBatch |
An op that enqueues TPUEmbedding input indices from a SparseTensor. |
EnqueueTPUEmbeddingSparseTensorBatch |
Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). |
EnsureShape<T extends TType> |
Ensures that the tensor's shape matches the expected shape. |
Enter<T extends TType> |
Creates or finds a child frame, and makes `data` available to the child frame. |
Equal |
Returns the truth value of (x == y) element-wise. |
Erf<T extends TNumber> |
Computes the Gauss error function of `x` element-wise. |
Erfc<T extends TNumber> |
Computes the complementary error function of `x` element-wise. |
EuclideanNorm<T extends TType> |
Computes the euclidean norm of elements across dimensions of a tensor. |
Execute |
Op that loads and executes a TPU program on a TPU device. |
ExecuteAndUpdateVariables |
Op that executes a program with optional in-place variable updates. |
Exit<T extends TType> |
Exits the current frame to its parent frame. |
Exp<T extends TType> |
Computes exponential of x element-wise. |
ExpandDims<T extends TType> |
Inserts a dimension of 1 into a tensor's shape. |
Expint<T extends TNumber> |
|
Expm1<T extends TType> |
Computes `exp(x) - 1` element-wise. |
ExtractGlimpse |
Extracts a glimpse from the input tensor. |
ExtractImagePatches<T extends TType> |
Extract `patches` from `images` and put them in the "depth" output dimension. |
ExtractJpegShape<T extends TNumber> |
Extract the shape information of a JPEG-encoded image. |
ExtractVolumePatches<T extends TNumber> |
Extract `patches` from `input` and put them in the `"depth"` output dimension. |
Fact |
Output a fact about factorials. |
FakeQuantWithMinMaxArgs |
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. |
FakeQuantWithMinMaxArgsGradient |
Compute gradients for a FakeQuantWithMinMaxArgs operation. |
FakeQuantWithMinMaxVars |
Fake-quantize the 'inputs' tensor of type float via global float scalars
Fake-quantize the `inputs` tensor of type float via global float scalars
`min` and `max` to `outputs` tensor of same shape as `inputs`. |
FakeQuantWithMinMaxVarsGradient |
Compute gradients for a FakeQuantWithMinMaxVars operation. |
FakeQuantWithMinMaxVarsPerChannel |
Fake-quantize the 'inputs' tensor of type float via per-channel floats
Fake-quantize the `inputs` tensor of type float per-channel and one of the
shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max`
of shape `[d]` to `outputs` tensor of same shape as `inputs`. |
FakeQuantWithMinMaxVarsPerChannelGradient |
Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation. |
Fft<T extends TType> |
Fast Fourier transform. |
Fft2d<T extends TType> |
2D fast Fourier transform. |
Fft3d<T extends TType> |
3D fast Fourier transform. |
FifoQueue |
A queue that produces elements in first-in first-out order. |
Fill<U extends TType> |
Creates a tensor filled with a scalar value. |
FilterByLastComponentDataset |
Creates a dataset containing elements of first component of `input_dataset` having true in the last component. |
Fingerprint |
Generates fingerprint values. |
FixedLengthRecordDataset |
|
FixedLengthRecordReader |
A Reader that outputs fixed-length records from a file. |
FixedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution. |
Floor<T extends TNumber> |
Returns element-wise largest integer not greater than x. |
FloorDiv<T extends TType> |
Returns x // y element-wise. |
FloorMod<T extends TNumber> |
Returns element-wise remainder of division. |
FlushSummaryWriter |
|
FractionalAvgPool<T extends TNumber> |
Performs fractional average pooling on the input. |
FractionalAvgPoolGrad<T extends TNumber> |
Computes gradient of the FractionalAvgPool function. |
FractionalMaxPool<T extends TNumber> |
Performs fractional max pooling on the input. |
FractionalMaxPoolGrad<T extends TNumber> |
Computes gradient of the FractionalMaxPool function. |
FresnelCos<T extends TNumber> |
|
FresnelSin<T extends TNumber> |
|
FusedBatchNorm<T extends TNumber, U extends TNumber> |
Batch normalization. |
FusedBatchNormGrad<T extends TNumber, U extends TNumber> |
Gradient for batch normalization. |
FusedPadConv2d<T extends TNumber> |
Performs a padding as a preprocess during a convolution. |
FusedResizeAndPadConv2d<T extends TNumber> |
Performs a resize and padding as a preprocess during a convolution. |
GRUBlockCell<T extends TNumber> |
Computes the GRU cell forward propagation for 1 time step. |
GRUBlockCellGrad<T extends TNumber> |
Computes the GRU cell back-propagation for 1 time step. |
Gather<T extends TType> |
Wraps the XLA Gather operator documented at
https://www.tensorflow.org/xla/operation_semantics#gather |
GatherNd<T extends TType> |
Gather slices from `params` into a Tensor with shape specified by `indices`. |
GatherV2<T extends TNumber> |
Mutually accumulates multiple tensors of identical type and shape. |
GenerateBoundingBoxProposals |
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors,
applies non-maximal suppression on overlapping boxes with higher than
`nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter
side is less than `min_size`. |
GenerateVocabRemapping |
Given a path to new and old vocabulary files, returns a remapping Tensor of
length `num_new_vocab`, where `remapping[i]` contains the row number in the old
vocabulary that corresponds to row `i` in the new vocabulary (starting at line
`new_vocab_offset` and up to `num_new_vocab` entities), or `-1` if entry `i`
in the new vocabulary is not in the old vocabulary. |
GetSessionHandle |
Store the input tensor in the state of the current session. |
GetSessionTensor<T extends TType> |
Get the value of the tensor specified by its handle. |
Greater |
Returns the truth value of (x > y) element-wise. |
GreaterEqual |
Returns the truth value of (x >= y) element-wise. |
GuaranteeConst<T extends TType> |
Gives a guarantee to the TF runtime that the input tensor is a constant. |
HashTable |
Creates a non-initialized hash table. |
HistogramFixedWidth<U extends TNumber> |
Return histogram of values. |
HistogramSummary |
Outputs a `Summary` protocol buffer with a histogram. |
HsvToRgb<T extends TNumber> |
Convert one or more images from HSV to RGB. |
Identity<T extends TType> |
Return a tensor with the same shape and contents as the input tensor or value. |
IdentityN |
Returns a list of tensors with the same shapes and contents as the input
tensors. |
IdentityReader |
A Reader that outputs the queued work as both the key and value. |
Ifft<T extends TType> |
Inverse fast Fourier transform. |
Ifft2d<T extends TType> |
Inverse 2D fast Fourier transform. |
Ifft3d<T extends TType> |
Inverse 3D fast Fourier transform. |
Igamma<T extends TNumber> |
Compute the lower regularized incomplete Gamma function `P(a, x)`. |
IgammaGradA<T extends TNumber> |
Computes the gradient of `igamma(a, x)` wrt `a`. |
Igammac<T extends TNumber> |
Compute the upper regularized incomplete Gamma function `Q(a, x)`. |
IgnoreErrorsDataset |
Creates a dataset that contains the elements of `input_dataset` ignoring errors. |
Imag<U extends TNumber> |
Returns the imaginary part of a complex number. |
ImageProjectiveTransformV2<T extends TNumber> |
Applies the given transform to each of the images. |
ImageProjectiveTransformV3<T extends TNumber> |
Applies the given transform to each of the images. |
ImageSummary |
Outputs a `Summary` protocol buffer with images. |
ImmutableConst<T extends TType> |
Returns immutable tensor from memory region. |
ImportEvent |
|
InTopK |
Says whether the targets are in the top `K` predictions. |
InfeedDequeue<T extends TType> |
A placeholder op for a value that will be fed into the computation. |
InfeedDequeueTuple |
Fetches multiple values from infeed as an XLA tuple. |
InfeedEnqueue |
An op which feeds a single Tensor value into the computation. |
InfeedEnqueuePrelinearizedBuffer |
An op which enqueues prelinearized buffer into TPU infeed. |
InfeedEnqueueTuple |
Feeds multiple Tensor values into the computation as an XLA tuple. |
Init |
|
InitializeTable |
Table initializer that takes two tensors for keys and values respectively. |
InitializeTableFromDataset |
|
InitializeTableFromTextFile |
Initializes a table from a text file. |
InplaceAdd<T extends TType> |
Adds v into specified rows of x. |
InplaceSub<T extends TType> |
Subtracts `v` into specified rows of `x`. |
InplaceUpdate<T extends TType> |
Updates specified rows 'i' with values 'v'. |
Inv<T extends TType> |
Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). |
InvGrad<T extends TType> |
Computes the gradient for the inverse of `x` wrt its input. |
Invert<T extends TNumber> |
Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. |
InvertPermutation<T extends TNumber> |
Computes the inverse permutation of a tensor. |
Irfft<U extends TNumber> |
Inverse real-valued fast Fourier transform. |
Irfft2d<U extends TNumber> |
Inverse 2D real-valued fast Fourier transform. |
Irfft3d<U extends TNumber> |
Inverse 3D real-valued fast Fourier transform. |
IsBoostedTreesEnsembleInitialized |
Checks whether a tree ensemble has been initialized. |
IsBoostedTreesQuantileStreamResourceInitialized |
Checks whether a quantile stream has been initialized. |
IsFinite |
Returns which elements of x are finite. |
IsInf |
Returns which elements of x are Inf. |
IsNan |
Returns which elements of x are NaN. |
IsVariableInitialized |
Checks whether a tensor has been initialized. |
IsotonicRegression<U extends TNumber> |
Solves a batch of isotonic regression problems. |
Iterator |
|
IteratorFromStringHandle |
|
IteratorGetDevice |
Returns the name of the device on which `resource` has been placed. |
IteratorGetNext |
Gets the next output from the given iterator . |
IteratorGetNextAsOptional |
Gets the next output from the given iterator as an Optional variant. |
IteratorGetNextSync |
Gets the next output from the given iterator. |
IteratorToStringHandle |
Converts the given `resource_handle` representing an iterator to a string. |
Join |
Joins the strings in the given list of string tensors into one tensor;
with the given separator (default is an empty separator). |
KMC2ChainInitialization |
Returns the index of a data point that should be added to the seed set. |
KeyValueSort<T extends TNumber, U extends TType> |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
. |
KmeansPlusPlusInitialization |
Selects num_to_sample rows of input using the KMeans++ criterion. |
KthOrderStatistic |
Computes the Kth order statistic of a data set. |
L2Loss<T extends TNumber> |
L2 Loss. |
LMDBDataset |
Creates a dataset that emits the key-value pairs in one or more LMDB files. |
LSTMBlockCell<T extends TNumber> |
Computes the LSTM cell forward propagation for 1 time step. |
LSTMBlockCellGrad<T extends TNumber> |
Computes the LSTM cell backward propagation for 1 timestep. |
LatencyStatsDataset |
Records the latency of producing `input_dataset` elements in a StatsAggregator. |
LeakyRelu<T extends TNumber> |
Computes rectified linear: `max(features, features * alpha)`. |
LeakyReluGrad<T extends TNumber> |
Computes rectified linear gradients for a LeakyRelu operation. |
LearnedUnigramCandidateSampler |
Generates labels for candidate sampling with a learned unigram distribution. |
LeftShift<T extends TNumber> |
Elementwise computes the bitwise left-shift of `x` and `y`. |
Less |
Returns the truth value of (x < y) element-wise. |
LessEqual |
Returns the truth value of (x <= y) element-wise. |
Lgamma<T extends TNumber> |
Computes the log of the absolute value of `Gamma(x)` element-wise. |
LinSpace<T extends TNumber> |
Generates values in an interval. |
LmdbDataset |
|
LmdbReader |
A Reader that outputs the records from a LMDB file. |
LoadAndRemapMatrix |
Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint
at `ckpt_path` and potentially reorders its rows and columns using the
specified remappings. |
LoadTPUEmbeddingADAMParameters |
Load ADAM embedding parameters. |
LoadTPUEmbeddingADAMParametersGradAccumDebug |
Load ADAM embedding parameters with debug support. |
LoadTPUEmbeddingAdadeltaParameters |
Load Adadelta embedding parameters. |
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug |
Load Adadelta parameters with debug support. |
LoadTPUEmbeddingAdagradParameters |
Load Adagrad embedding parameters. |
LoadTPUEmbeddingAdagradParametersGradAccumDebug |
Load Adagrad embedding parameters with debug support. |
LoadTPUEmbeddingCenteredRMSPropParameters |
Load centered RMSProp embedding parameters. |
LoadTPUEmbeddingFTRLParameters |
Load FTRL embedding parameters. |
LoadTPUEmbeddingFTRLParametersGradAccumDebug |
Load FTRL embedding parameters with debug support. |
LoadTPUEmbeddingMDLAdagradLightParameters |
Load MDL Adagrad Light embedding parameters. |
LoadTPUEmbeddingMomentumParameters |
Load Momentum embedding parameters. |
LoadTPUEmbeddingMomentumParametersGradAccumDebug |
Load Momentum embedding parameters with debug support. |
LoadTPUEmbeddingProximalAdagradParameters |
Load proximal Adagrad embedding parameters. |
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug |
Load proximal Adagrad embedding parameters with debug support. |
LoadTPUEmbeddingProximalYogiParameters |
|
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug |
|
LoadTPUEmbeddingRMSPropParameters |
Load RMSProp embedding parameters. |
LoadTPUEmbeddingRMSPropParametersGradAccumDebug |
Load RMSProp embedding parameters with debug support. |
LoadTPUEmbeddingStochasticGradientDescentParameters |
Load SGD embedding parameters. |
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug |
Load SGD embedding parameters. |
LocalResponseNormalization<T extends TNumber> |
Local Response Normalization. |
LocalResponseNormalizationGrad<T extends TNumber> |
Gradients for Local Response Normalization. |
Log<T extends TType> |
Computes natural logarithm of x element-wise. |
Log1p<T extends TType> |
Computes natural logarithm of (1 + x) element-wise. |
LogMatrixDeterminant<T extends TType> |
Computes the sign and the log of the absolute value of the determinant of
one or more square matrices. |
LogSoftmax<T extends TNumber> |
Computes log softmax activations. |
LogUniformCandidateSampler |
Generates labels for candidate sampling with a log-uniform distribution. |
LogicalAnd |
Returns the truth value of x AND y element-wise. |
LogicalNot |
Returns the truth value of `NOT x` element-wise. |
LogicalOr |
Returns the truth value of x OR y element-wise. |
LookupTableExport<T extends TType, U extends TType> |
Outputs all keys and values in the table. |
LookupTableFind<U extends TType> |
Looks up keys in a table, outputs the corresponding values. |
LookupTableImport |
Replaces the contents of the table with the specified keys and values. |
LookupTableInsert |
Updates the table to associates keys with values. |
LookupTableRemove |
Removes keys and its associated values from a table. |
LookupTableSize |
Computes the number of elements in the given table. |
LoopCond |
Forwards the input to the output. |
Lower |
Converts all uppercase characters into their respective lowercase replacements. |
LowerBound<U extends TNumber> |
Applies lower_bound(sorted_search_values, values) along each row. |
Lu<T extends TType, U extends TNumber> |
Computes the LU decomposition of one or more square matrices. |
MakeIterator |
Makes a new iterator from the given `dataset` and stores it in `iterator`. |
MakeUnique |
Make all elements in the non-Batch dimension unique, but \"close\" to
their initial value. |
MapClear |
Op removes all elements in the underlying container. |
MapIncompleteSize |
Op returns the number of incomplete elements in the underlying container. |
MapPeek |
Op peeks at the values at the specified key. |
MapSize |
Op returns the number of elements in the underlying container. |
MapStage |
Stage (key, values) in the underlying container which behaves like a hashtable. |
MapUnstage |
Op removes and returns the values associated with the key
from the underlying container. |
MapUnstageNoKey |
Op removes and returns a random (key, value)
from the underlying container. |
MatMul<T extends TType> |
Multiply the matrix "a" by the matrix "b". |
MatchingFiles |
Returns the set of files matching one or more glob patterns. |
MatchingFilesDataset |
|
MatrixDiag<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values. |
MatrixDiagPart<T extends TType> |
Returns the batched diagonal part of a batched tensor. |
MatrixDiagPartV3<T extends TType> |
Returns the batched diagonal part of a batched tensor. |
MatrixDiagV3<T extends TType> |
Returns a batched diagonal tensor with given batched diagonal values. |
MatrixLogarithm<T extends TType> |
Computes the matrix logarithm of one or more square matrices:
\\(log(exp(A)) = A\\)
This op is only defined for complex matrices. |
MatrixSetDiag<T extends TType> |
Returns a batched matrix tensor with new batched diagonal values. |
MatrixSolveLs<T extends TType> |
Solves one or more linear least-squares problems. |
Max<T extends TType> |
Computes the maximum of elements across dimensions of a tensor. |
MaxIntraOpParallelismDataset |
Creates a dataset that overrides the maximum intra-op parallelism. |
MaxPool<T extends TType> |
Performs max pooling on the input. |
MaxPool3d<T extends TNumber> |
Performs 3D max pooling on the input. |
MaxPool3dGrad<U extends TNumber> |
Computes gradients of 3D max pooling function. |
MaxPool3dGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function. |
MaxPoolGrad<T extends TNumber> |
Computes gradients of the maxpooling function. |
MaxPoolGradGrad<T extends TNumber> |
Computes second-order gradients of the maxpooling function. |
MaxPoolGradGradWithArgmax<T extends TNumber> |
Computes second-order gradients of the maxpooling function. |
MaxPoolGradWithArgmax<T extends TNumber> |
Computes gradients of the maxpooling function. |
MaxPoolWithArgmax<T extends TNumber, U extends TNumber> |
Performs max pooling on the input and outputs both max values and indices. |
Maximum<T extends TNumber> |
Returns the max of x and y (i.e. |
Mean<T extends TType> |
Computes the mean of elements across dimensions of a tensor. |
Merge<T extends TType> |
Forwards the value of an available tensor from `inputs` to `output`. |
MergeSummary |
Merges summaries. |
MergeV2Checkpoints |
V2 format specific: merges the metadata files of sharded checkpoints. |
Mfcc |
Transforms a spectrogram into a form that's useful for speech recognition. |
Min<T extends TType> |
Computes the minimum of elements across dimensions of a tensor. |
Minimum<T extends TNumber> |
Returns the min of x and y (i.e. |
MirrorPad<T extends TType> |
Pads a tensor with mirrored values. |
MirrorPadGrad<T extends TType> |
Gradient op for `MirrorPad` op. |
MlirPassthroughOp |
Wraps an arbitrary MLIR computation expressed as a module with a main() function. |
Mod<T extends TNumber> |
Returns element-wise remainder of division. |
ModelDataset |
Identity transformation that models performance. |
Mul<T extends TType> |
Returns x * y element-wise. |
MulNoNan<T extends TType> |
Returns x * y element-wise. |
MultiDeviceIterator |
Creates a MultiDeviceIterator resource. |
MultiDeviceIteratorFromStringHandle |
Generates a MultiDeviceIterator resource from its provided string handle. |
MultiDeviceIteratorGetNextFromShard |
Gets next element for the provided shard number. |
MultiDeviceIteratorInit |
Initializes the multi device iterator with the given dataset. |
MultiDeviceIteratorToStringHandle |
Produces a string handle for the given MultiDeviceIterator. |
Multinomial<U extends TNumber> |
Draws samples from a multinomial distribution. |
MutableDenseHashTable |
Creates an empty hash table that uses tensors as the backing store. |
MutableHashTable |
Creates an empty hash table. |
MutableHashTableOfTensors |
Creates an empty hash table. |
Mutex |
Creates a Mutex resource that can be locked by `MutexLock`. |
MutexLock |
Locks a mutex resource. |
NcclAllReduce<T extends TNumber> |
Outputs a tensor containing the reduction across all input tensors. |
NcclBroadcast<T extends TNumber> |
Sends `input` to all devices that are connected to the output. |
NcclReduce<T extends TNumber> |
Reduces `input` from `num_devices` using `reduction` to a single device. |
Ndtri<T extends TNumber> |
|
NearestNeighbors |
Selects the k nearest centers for each point. |
Neg<T extends TType> |
Computes numerical negative value element-wise. |
NegTrain |
Training via negative sampling. |
NextAfter<T extends TNumber> |
Returns the next representable value of `x1` in the direction of `x2`, element-wise. |
NextIteration<T extends TType> |
Makes its input available to the next iteration. |
NoOp |
Does nothing. |
NonDeterministicInts<U extends TType> |
Non-deterministically generates some integers. |
NonMaxSuppression<T extends TNumber> |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap
with previously selected boxes. |
NonMaxSuppressionWithOverlaps |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high overlaps
with previously selected boxes. |
NonSerializableDataset |
|
NotEqual |
Returns the truth value of (x != y) element-wise. |
NthElement<T extends TNumber> |
Finds values of the `n`-th order statistic for the last dimension. |
OneHot<U extends TType> |
Returns a one-hot tensor. |
Ones<T extends TType> |
An operator creating a constant initialized with ones of the shape given by `dims`. |
OnesLike<T extends TType> |
Returns a tensor of ones with the same shape and type as x. |
Operand<T extends TType> |
Interface implemented by operands of a TensorFlow operation. |
OptimizeDataset |
Creates a dataset by applying optimizations to `input_dataset`. |
OptimizeDatasetV2 |
Creates a dataset by applying related optimizations to `input_dataset`. |
OptionalFromValue |
Constructs an Optional variant from a tuple of tensors. |
OptionalGetValue |
Returns the value stored in an Optional variant or raises an error if none exists. |
OptionalHasValue |
Returns true if and only if the given Optional variant has a value. |
OptionalNone |
Creates an Optional variant with no value. |
OrderedMapClear |
Op removes all elements in the underlying container. |
OrderedMapIncompleteSize |
Op returns the number of incomplete elements in the underlying container. |
OrderedMapPeek |
Op peeks at the values at the specified key. |
OrderedMapSize |
Op returns the number of elements in the underlying container. |
OrderedMapStage |
Stage (key, values) in the underlying container which behaves like a ordered
associative container. |
OrderedMapUnstage |
Op removes and returns the values associated with the key
from the underlying container. |
OrderedMapUnstageNoKey |
Op removes and returns the (key, value) element with the smallest
key from the underlying container. |
OrdinalSelector |
A TPU core selector Op. |
OutfeedDequeue<T extends TType> |
Retrieves a single tensor from the computation outfeed. |
OutfeedDequeueTuple |
Retrieve multiple values from the computation outfeed. |
OutfeedDequeueTupleV2 |
Retrieve multiple values from the computation outfeed. |
OutfeedDequeueV2<T extends TType> |
Retrieves a single tensor from the computation outfeed. |
OutfeedEnqueue |
Enqueue a Tensor on the computation outfeed. |
OutfeedEnqueueTuple |
Enqueue multiple Tensor values on the computation outfeed. |
Output<T extends TType> |
A symbolic handle to a tensor produced by an Operation . |
Pad<T extends TType> |
Wraps the XLA Pad operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#pad
. |
PaddedBatchDataset |
Creates a dataset that batches and pads `batch_size` elements from the input. |
PaddingFifoQueue |
A queue that produces elements in first-in first-out order. |
ParallelConcat<T extends TType> |
Concatenates a list of `N` tensors along the first dimension. |
ParallelDynamicStitch<T extends TType> |
Interleave the values from the `data` tensors into a single tensor. |
ParameterizedTruncatedNormal<U extends TNumber> |
Outputs random values from a normal distribution. |
ParseExample |
Transforms a vector of tf.Example protos (as strings) into typed tensors. |
ParseExampleDataset |
Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. |
ParseSequenceExample |
Transforms a vector of tf.io.SequenceExample protos (as strings) into
typed tensors. |
ParseSingleExample |
Transforms a tf.Example proto (as a string) into typed tensors. |
ParseSingleSequenceExample |
Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors. |
ParseTensor<T extends TType> |
Transforms a serialized tensorflow.TensorProto proto into a Tensor. |
PartitionedInput<T extends TType> |
An op that groups a list of partitioned inputs together. |
PartitionedOutput<T extends TType> |
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation. |
Placeholder<T extends TType> |
A placeholder op for a value that will be fed into the computation. |
PlaceholderWithDefault<T extends TType> |
A placeholder op that passes through `input` when its output is not fed. |
Polygamma<T extends TNumber> |
Compute the polygamma function \\(\psi^{(n)}(x)\\). |
PopulationCount |
Computes element-wise population count (a.k.a. |
Pow<T extends TType> |
Computes the power of one value to another. |
PrefetchDataset |
Creates a dataset that asynchronously prefetches elements from `input_dataset`. |
Prelinearize |
An op which linearizes one Tensor value to an opaque variant tensor. |
PrelinearizeTuple |
An op which linearizes multiple Tensor values to an opaque variant tensor. |
PreventGradient<T extends TType> |
An identity op that triggers an error if a gradient is requested. |
Print |
Prints a string scalar. |
PriorityQueue |
A queue that produces elements sorted by the first component value. |
PrivateThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
Prod<T extends TType> |
Computes the product of elements across dimensions of a tensor. |
Qr<T extends TType> |
Computes the QR decompositions of one or more matrices. |
Quantize<T extends TType> |
Quantize the 'input' tensor of type float to 'output' tensor of type 'T'. |
QuantizeAndDequantize<T extends TNumber> |
Quantizes then dequantizes a tensor. |
QuantizeAndDequantizeV3<T extends TNumber> |
Quantizes then dequantizes a tensor. |
QuantizeAndDequantizeV4<T extends TNumber> |
Returns the gradient of `quantization.QuantizeAndDequantizeV4`. |
QuantizeAndDequantizeV4Grad<T extends TNumber> |
Returns the gradient of `QuantizeAndDequantizeV4`. |
QuantizeDownAndShrinkRange<U extends TType> |
Convert the quantized 'input' tensor into a lower-precision 'output', using the
actual distribution of the values to maximize the usage of the lower bit depth
and adjusting the output min and max ranges accordingly. |
QuantizedAdd<V extends TType> |
Returns x + y element-wise, working on quantized buffers. |
QuantizedAvgPool<T extends TType> |
Produces the average pool of the input tensor for quantized types. |
QuantizedBatchNormWithGlobalNormalization<U extends TType> |
Quantized Batch normalization. |
QuantizedBiasAdd<V extends TType> |
Adds Tensor 'bias' to Tensor 'input' for Quantized types. |
QuantizedConcat<T extends TType> |
Concatenates quantized tensors along one dimension. |
QuantizedConv2DAndRelu<V extends TType> |
|
QuantizedConv2DAndReluAndRequantize<V extends TType> |
|
QuantizedConv2DAndRequantize<V extends TType> |
|
QuantizedConv2DPerChannel<V extends TType> |
Computes QuantizedConv2D per channel. |
QuantizedConv2DWithBias<V extends TType> |
|
QuantizedConv2DWithBiasAndRelu<V extends TType> |
|
QuantizedConv2DWithBiasAndReluAndRequantize<W extends TType> |
|
QuantizedConv2DWithBiasAndRequantize<W extends TType> |
|
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize<X extends TType> |
|
QuantizedConv2DWithBiasSumAndRelu<V extends TType> |
|
QuantizedConv2DWithBiasSumAndReluAndRequantize<X extends TType> |
|
QuantizedConv2d<V extends TType> |
Computes a 2D convolution given quantized 4D input and filter tensors. |
QuantizedDepthwiseConv2D<V extends TType> |
Computes quantized depthwise Conv2D. |
QuantizedDepthwiseConv2DWithBias<V extends TType> |
Computes quantized depthwise Conv2D with Bias. |
QuantizedDepthwiseConv2DWithBiasAndRelu<V extends TType> |
Computes quantized depthwise Conv2D with Bias and Relu. |
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize<W extends TType> |
Computes quantized depthwise Conv2D with Bias, Relu and Requantize. |
QuantizedInstanceNorm<T extends TType> |
Quantized Instance normalization. |
QuantizedMatMul<V extends TType> |
Perform a quantized matrix multiplication of `a` by the matrix `b`. |
QuantizedMatMulWithBias<W extends TType> |
Performs a quantized matrix multiplication of `a` by the matrix `b` with bias
add. |
QuantizedMatMulWithBiasAndDequantize<W extends TNumber> |
|
QuantizedMatMulWithBiasAndRelu<V extends TType> |
Perform a quantized matrix multiplication of `a` by the matrix `b` with bias
add and relu fusion. |
QuantizedMatMulWithBiasAndReluAndRequantize<W extends TType> |
Perform a quantized matrix multiplication of `a` by the matrix `b` with bias
add and relu and requantize fusion. |
QuantizedMatMulWithBiasAndRequantize<W extends TType> |
|
QuantizedMaxPool<T extends TType> |
Produces the max pool of the input tensor for quantized types. |
QuantizedMul<V extends TType> |
Returns x * y element-wise, working on quantized buffers. |
QuantizedRelu<U extends TType> |
Computes Quantized Rectified Linear: `max(features, 0)` |
QuantizedRelu6<U extends TType> |
Computes Quantized Rectified Linear 6: `min(max(features, 0), 6)` |
QuantizedReluX<U extends TType> |
Computes Quantized Rectified Linear X: `min(max(features, 0), max_value)` |
QuantizedReshape<T extends TType> |
Reshapes a quantized tensor as per the Reshape op. |
QuantizedResizeBilinear<T extends TType> |
Resize quantized `images` to `size` using quantized bilinear interpolation. |
QueueClose |
Closes the given queue. |
QueueDequeue |
Dequeues a tuple of one or more tensors from the given queue. |
QueueDequeueMany |
Dequeues `n` tuples of one or more tensors from the given queue. |
QueueDequeueUpTo |
Dequeues `n` tuples of one or more tensors from the given queue. |
QueueEnqueue |
Enqueues a tuple of one or more tensors in the given queue. |
QueueEnqueueMany |
Enqueues zero or more tuples of one or more tensors in the given queue. |
QueueIsClosed |
Returns true if queue is closed. |
QueueSize |
Computes the number of elements in the given queue. |
RaggedBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
RaggedCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a ragged tensor input. |
RaggedCross<T extends TType, U extends TNumber> |
Generates a feature cross from a list of tensors, and returns it as a
RaggedTensor. |
RaggedGather<T extends TNumber, U extends TType> |
Gather ragged slices from `params` axis `0` according to `indices`. |
RaggedRange<U extends TNumber, T extends TNumber> |
Returns a `RaggedTensor` containing the specified sequences of numbers. |
RaggedTensorFromVariant<U extends TNumber, T extends TType> |
Decodes a `variant` Tensor into a `RaggedTensor`. |
RaggedTensorToSparse<U extends TType> |
Converts a `RaggedTensor` into a `SparseTensor` with the same values. |
RaggedTensorToTensor<U extends TType> |
Create a dense tensor from a ragged tensor, possibly altering its shape. |
RaggedTensorToVariant |
Encodes a `RaggedTensor` into a `variant` Tensor. |
RaggedTensorToVariantGradient<U extends TType> |
Helper used to compute the gradient for `RaggedTensorToVariant`. |
RandomCrop<T extends TNumber> |
Randomly crop `image`. |
RandomDataset |
Creates a Dataset that returns pseudorandom numbers. |
RandomGamma<U extends TNumber> |
Outputs random values from the Gamma distribution(s) described by alpha. |
RandomGammaGrad<T extends TNumber> |
Computes the derivative of a Gamma random sample w.r.t. |
RandomPoisson<V extends TNumber> |
Outputs random values from the Poisson distribution(s) described by rate. |
RandomShuffle<T extends TType> |
Randomly shuffles a tensor along its first dimension. |
RandomShuffleQueue |
A queue that randomizes the order of elements. |
RandomStandardNormal<U extends TNumber> |
Outputs random values from a normal distribution. |
RandomUniform<U extends TNumber> |
Outputs random values from a uniform distribution. |
RandomUniformInt<U extends TNumber> |
Outputs random integers from a uniform distribution. |
Range<T extends TNumber> |
Creates a sequence of numbers. |
RangeDataset |
Creates a dataset with a range of values. |
Rank |
Returns the rank of a tensor. |
RawOp |
A base class for Op implementations that are backed by a single Operation . |
ReadFile |
Reads and outputs the entire contents of the input filename. |
ReadVariableOp<T extends TType> |
Reads the value of a variable. |
ReaderNumRecordsProduced |
Returns the number of records this Reader has produced. |
ReaderNumWorkUnitsCompleted |
Returns the number of work units this Reader has finished processing. |
ReaderRead |
Returns the next record (key, value pair) produced by a Reader. |
ReaderReadUpTo |
Returns up to `num_records` (key, value) pairs produced by a Reader. |
ReaderReset |
Restore a Reader to its initial clean state. |
ReaderRestoreState |
Restore a reader to a previously saved state. |
ReaderSerializeState |
Produce a string tensor that encodes the state of a Reader. |
Real<U extends TNumber> |
Returns the real part of a complex number. |
RealDiv<T extends TType> |
Returns x / y element-wise for real types. |
RebatchDataset |
Creates a dataset that changes the batch size. |
RebatchDatasetV2 |
Creates a dataset that changes the batch size. |
Reciprocal<T extends TType> |
Computes the reciprocal of x element-wise. |
ReciprocalGrad<T extends TType> |
Computes the gradient for the inverse of `x` wrt its input. |
RecordInput |
Emits randomized records. |
Recv<T extends TType> |
Receives the named tensor from another XLA computation. |
RecvTPUEmbeddingActivations |
An op that receives embedding activations on the TPU. |
Reduce<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape. |
ReduceAll |
Computes the "logical and" of elements across dimensions of a tensor. |
ReduceAny |
Computes the "logical or" of elements across dimensions of a tensor. |
ReduceJoin |
Joins a string Tensor across the given dimensions. |
ReduceMax<T extends TType> |
Computes the maximum of elements across dimensions of a tensor. |
ReduceMin<T extends TType> |
Computes the minimum of elements across dimensions of a tensor. |
ReduceProd<T extends TType> |
Computes the product of elements across dimensions of a tensor. |
ReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a tensor. |
ReduceV2<T extends TNumber> |
Mutually reduces multiple tensors of identical type and shape. |
RefEnter<T extends TType> |
Creates or finds a child frame, and makes `data` available to the child frame. |
RefExit<T extends TType> |
Exits the current frame to its parent frame. |
RefIdentity<T extends TType> |
Return the same ref tensor as the input ref tensor. |
RefMerge<T extends TType> |
Forwards the value of an available tensor from `inputs` to `output`. |
RefNextIteration<T extends TType> |
Makes its input available to the next iteration. |
RefSelect<T extends TType> |
Forwards the `index`th element of `inputs` to `output`. |
RefSwitch<T extends TType> |
Forwards the ref tensor `data` to the output port determined by `pred`. |
RegexFullMatch |
Check if the input matches the regex pattern. |
RegexReplace |
Replaces matches of the `pattern` regular expression in `input` with the
replacement string provided in `rewrite`. |
RegisterDataset |
Registers a dataset with the tf.data service. |
Relu<T extends TType> |
Computes rectified linear: `max(features, 0)`. |
Relu6<T extends TNumber> |
Computes rectified linear 6: `min(max(features, 0), 6)`. |
Relu6Grad<T extends TNumber> |
Computes rectified linear 6 gradients for a Relu6 operation. |
ReluGrad<T extends TNumber> |
Computes rectified linear gradients for a Relu operation. |
RemoteFusedGraphExecute |
Execute a sub graph on a remote processor. |
RepeatDataset |
Creates a dataset that emits the outputs of `input_dataset` `count` times. |
ReplicaId |
Replica ID. |
ReplicateMetadata |
Metadata indicating how the TPU computation should be replicated. |
ReplicatedInput<T extends TType> |
Connects N inputs to an N-way replicated TPU computation. |
ReplicatedOutput<T extends TType> |
Connects N outputs from an N-way replicated TPU computation. |
RequantizationRange |
Computes a range that covers the actual values present in a quantized tensor. |
RequantizationRangePerChannel |
Computes requantization range per channel. |
Requantize<U extends TType> |
Converts the quantized `input` tensor into a lower-precision `output`. |
RequantizePerChannel<U extends TType> |
Requantizes input with min and max values known per channel. |
Reshape<T extends TType> |
Reshapes a tensor. |
ResizeArea |
Resize `images` to `size` using area interpolation. |
ResizeBicubic |
Resize `images` to `size` using bicubic interpolation. |
ResizeBicubicGrad<T extends TNumber> |
Computes the gradient of bicubic interpolation. |
ResizeBilinear |
Resize `images` to `size` using bilinear interpolation. |
ResizeBilinearGrad<T extends TNumber> |
Computes the gradient of bilinear interpolation. |
ResizeNearestNeighbor<T extends TNumber> |
Resize `images` to `size` using nearest neighbor interpolation. |
ResizeNearestNeighborGrad<T extends TNumber> |
Computes the gradient of nearest neighbor interpolation. |
ResourceAccumulatorApplyGradient |
Applies a gradient to a given accumulator. |
ResourceAccumulatorNumAccumulated |
Returns the number of gradients aggregated in the given accumulators. |
ResourceAccumulatorSetGlobalStep |
Updates the accumulator with a new value for global_step. |
ResourceAccumulatorTakeGradient<T extends TType> |
Extracts the average gradient in the given ConditionalAccumulator. |
ResourceApplyAdaMax |
Update '*var' according to the AdaMax algorithm. |
ResourceApplyAdadelta |
Update '*var' according to the adadelta scheme. |
ResourceApplyAdagrad |
Update '*var' according to the adagrad scheme. |
ResourceApplyAdagradDa |
Update '*var' according to the proximal adagrad scheme. |
ResourceApplyAdam |
Update '*var' according to the Adam algorithm. |
ResourceApplyAdamWithAmsgrad |
Update '*var' according to the Adam algorithm. |
ResourceApplyAddSign |
Update '*var' according to the AddSign update. |
ResourceApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm. |
ResourceApplyFtrl |
Update '*var' according to the Ftrl-proximal scheme. |
ResourceApplyGradientDescent |
Update '*var' by subtracting 'alpha' * 'delta' from it. |
ResourceApplyKerasMomentum |
Update '*var' according to the momentum scheme. |
ResourceApplyMomentum |
Update '*var' according to the momentum scheme. |
ResourceApplyPowerSign |
Update '*var' according to the AddSign update. |
ResourceApplyProximalAdagrad |
Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. |
ResourceApplyProximalGradientDescent |
Update '*var' as FOBOS algorithm with fixed learning rate. |
ResourceApplyRmsProp |
Update '*var' according to the RMSProp algorithm. |
ResourceConditionalAccumulator |
A conditional accumulator for aggregating gradients. |
ResourceCountUpTo<T extends TNumber> |
Increments variable pointed to by 'resource' until it reaches 'limit'. |
ResourceGather<U extends TType> |
Gather slices from the variable pointed to by `resource` according to `indices`. |
ResourceGatherNd<U extends TType> |
|
ResourceScatterAdd |
Adds sparse updates to the variable referenced by `resource`. |
ResourceScatterDiv |
Divides sparse updates into the variable referenced by `resource`. |
ResourceScatterMax |
Reduces sparse updates into the variable referenced by `resource` using the `max` operation. |
ResourceScatterMin |
Reduces sparse updates into the variable referenced by `resource` using the `min` operation. |
ResourceScatterMul |
Multiplies sparse updates into the variable referenced by `resource`. |
ResourceScatterNdAdd |
Applies sparse addition to individual values or slices in a Variable. |
ResourceScatterNdMax |
|
ResourceScatterNdMin |
|
ResourceScatterNdSub |
Applies sparse subtraction to individual values or slices in a Variable. |
ResourceScatterNdUpdate |
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
ResourceScatterSub |
Subtracts sparse updates from the variable referenced by `resource`. |
ResourceScatterUpdate |
Assigns sparse updates to the variable referenced by `resource`. |
ResourceSparseApplyAdadelta |
var: Should be from a Variable(). |
ResourceSparseApplyAdagrad |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
ResourceSparseApplyAdagradDa |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
ResourceSparseApplyAdagradV2 |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
ResourceSparseApplyCenteredRmsProp |
Update '*var' according to the centered RMSProp algorithm. |
ResourceSparseApplyFtrl |
Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
ResourceSparseApplyKerasMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
ResourceSparseApplyMomentum |
Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
ResourceSparseApplyProximalAdagrad |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
ResourceSparseApplyProximalGradientDescent |
Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
ResourceSparseApplyRmsProp |
Update '*var' according to the RMSProp algorithm. |
ResourceStridedSliceAssign |
Assign `value` to the sliced l-value reference of `ref`. |
Restore |
Restores tensors from a V2 checkpoint. |
RestoreSlice<T extends TType> |
Restores a tensor from checkpoint files. |
RetrieveTPUEmbeddingADAMParameters |
Retrieve ADAM embedding parameters. |
RetrieveTPUEmbeddingADAMParametersGradAccumDebug |
Retrieve ADAM embedding parameters with debug support. |
RetrieveTPUEmbeddingAdadeltaParameters |
Retrieve Adadelta embedding parameters. |
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug |
Retrieve Adadelta embedding parameters with debug support. |
RetrieveTPUEmbeddingAdagradParameters |
Retrieve Adagrad embedding parameters. |
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug |
Retrieve Adagrad embedding parameters with debug support. |
RetrieveTPUEmbeddingCenteredRMSPropParameters |
Retrieve centered RMSProp embedding parameters. |
RetrieveTPUEmbeddingFTRLParameters |
Retrieve FTRL embedding parameters. |
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug |
Retrieve FTRL embedding parameters with debug support. |
RetrieveTPUEmbeddingMDLAdagradLightParameters |
Retrieve MDL Adagrad Light embedding parameters. |
RetrieveTPUEmbeddingMomentumParameters |
Retrieve Momentum embedding parameters. |
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug |
Retrieve Momentum embedding parameters with debug support. |
RetrieveTPUEmbeddingProximalAdagradParameters |
Retrieve proximal Adagrad embedding parameters. |
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug |
Retrieve proximal Adagrad embedding parameters with debug support. |
RetrieveTPUEmbeddingProximalYogiParameters |
|
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug |
|
RetrieveTPUEmbeddingRMSPropParameters |
Retrieve RMSProp embedding parameters. |
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug |
Retrieve RMSProp embedding parameters with debug support. |
RetrieveTPUEmbeddingStochasticGradientDescentParameters |
Retrieve SGD embedding parameters. |
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug |
Retrieve SGD embedding parameters with debug support. |
Reverse<T extends TType> |
Reverses specific dimensions of a tensor. |
ReverseSequence<T extends TType> |
Reverses variable length slices. |
Rfft<U extends TType> |
Real-valued fast Fourier transform. |
Rfft2d<U extends TType> |
2D real-valued fast Fourier transform. |
Rfft3d<U extends TType> |
3D real-valued fast Fourier transform. |
RgbToHsv<T extends TNumber> |
Converts one or more images from RGB to HSV. |
RightShift<T extends TNumber> |
Elementwise computes the bitwise right-shift of `x` and `y`. |
Rint<T extends TNumber> |
Returns element-wise integer closest to x. |
RngReadAndSkip |
Advance the counter of a counter-based RNG. |
RngSkip |
Advance the counter of a counter-based RNG. |
Roll<T extends TType> |
Rolls the elements of a tensor along an axis. |
Round<T extends TType> |
Rounds the values of a tensor to the nearest integer, element-wise. |
Rpc |
Perform batches of RPC requests. |
Rsqrt<T extends TType> |
Computes reciprocal of square root of x element-wise. |
RsqrtGrad<T extends TType> |
Computes the gradient for the rsqrt of `x` wrt its input. |
SampleDistortedBoundingBox<T extends TNumber> |
Generate a single randomly distorted bounding box for an image. |
SamplingDataset |
Creates a dataset that takes a Bernoulli sample of the contents of another dataset. |
Save |
Saves tensors in V2 checkpoint format. |
SaveSlices |
Saves input tensors slices to disk. |
ScalarSummary |
Outputs a `Summary` protocol buffer with scalar values. |
ScaleAndTranslate |
|
ScaleAndTranslateGrad<T extends TNumber> |
|
ScatterAdd<T extends TType> |
Adds sparse updates to a variable reference. |
ScatterDiv<T extends TType> |
Divides a variable reference by sparse updates. |
ScatterMax<T extends TNumber> |
Reduces sparse updates into a variable reference using the `max` operation. |
ScatterMin<T extends TNumber> |
Reduces sparse updates into a variable reference using the `min` operation. |
ScatterMul<T extends TType> |
Multiplies sparse updates into a variable reference. |
ScatterNd<U extends TType> |
Scatter `updates` into a new tensor according to `indices`. |
ScatterNdAdd<T extends TType> |
Applies sparse addition to individual values or slices in a Variable. |
ScatterNdMax<T extends TType> |
Computes element-wise maximum. |
ScatterNdMin<T extends TType> |
Computes element-wise minimum. |
ScatterNdNonAliasingAdd<T extends TType> |
Applies sparse addition to `input` using individual values or slices
from `updates` according to indices `indices`. |
ScatterNdSub<T extends TType> |
Applies sparse subtraction to individual values or slices in a Variable. |
ScatterNdUpdate<T extends TType> |
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
ScatterSub<T extends TType> |
Subtracts sparse updates to a variable reference. |
ScatterUpdate<T extends TType> |
Applies sparse updates to a variable reference. |
SdcaFprint |
Computes fingerprints of the input strings. |
SdcaOptimizer |
Distributed version of Stochastic Dual Coordinate Ascent (SDCA) optimizer for
linear models with L1 + L2 regularization. |
SdcaShrinkL1 |
Applies L1 regularization shrink step on the parameters. |
SegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor. |
SegmentMean<T extends TType> |
Computes the mean along segments of a tensor. |
SegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor. |
SegmentProd<T extends TType> |
Computes the product along segments of a tensor. |
SegmentSum<T extends TType> |
Computes the sum along segments of a tensor. |
Select<T extends TType> |
|
SelfAdjointEig<T extends TType> |
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported). |
Selu<T extends TNumber> |
Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)`
if < 0, `scale * features` otherwise. |
SeluGrad<T extends TNumber> |
Computes gradients for the scaled exponential linear (Selu) operation. |
Send |
Sends the named tensor to another XLA computation. |
SendTPUEmbeddingGradients |
Performs gradient updates of embedding tables. |
SerializeIterator |
Converts the given `resource_handle` representing an iterator to a variant tensor. |
SerializeManySparse<U extends TType> |
Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. |
SerializeSparse<U extends TType> |
Serialize a `SparseTensor` into a `[3]` `Tensor` object. |
SerializeTensor |
Transforms a Tensor into a serialized TensorProto proto. |
SetDiff1d<T extends TType, U extends TNumber> |
Computes the difference between two lists of numbers or strings. |
SetSize |
Number of unique elements along last dimension of input `set`. |
SetStatsAggregatorDataset |
|
Shape<U extends TNumber> |
Returns the shape of a tensor. |
ShapeN<U extends TNumber> |
Returns shape of tensors. |
ShardDataset |
Creates a `Dataset` that includes only 1/`num_shards` of this dataset. |
ShardedFilename |
Generate a sharded filename. |
ShardedFilespec |
Generate a glob pattern matching all sharded file names. |
Sharding<T extends TType> |
An op which shards the input based on the given sharding attribute. |
ShuffleAndRepeatDataset |
|
ShuffleDataset |
|
ShutdownDistributedTPU |
Shuts down a running distributed TPU system. |
Sigmoid<T extends TType> |
Computes sigmoid of `x` element-wise. |
SigmoidGrad<T extends TType> |
Computes the gradient of the sigmoid of `x` wrt its input. |
Sign<T extends TType> |
Returns an element-wise indication of the sign of a number. |
Sin<T extends TType> |
Computes sine of x element-wise. |
Sinh<T extends TType> |
Computes hyperbolic sine of x element-wise. |
Size<U extends TNumber> |
Returns the size of a tensor. |
SkipDataset |
Creates a dataset that skips `count` elements from the `input_dataset`. |
Skipgram |
Parses a text file and creates a batch of examples. |
SleepDataset |
|
Slice<T extends TType> |
Return a slice from 'input'. |
SlidingWindowDataset |
Creates a dataset that passes a sliding window over `input_dataset`. |
Snapshot<T extends TType> |
Returns a copy of the input tensor. |
SobolSample<T extends TNumber> |
Generates points from the Sobol sequence. |
Softmax<T extends TNumber> |
Computes softmax activations. |
SoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate. |
Softplus<T extends TNumber> |
Computes softplus: `log(exp(features) + 1)`. |
SoftplusGrad<T extends TNumber> |
Computes softplus gradients for a softplus operation. |
Softsign<T extends TNumber> |
Computes softsign: `features / (abs(features) + 1)`. |
SoftsignGrad<T extends TNumber> |
Computes softsign gradients for a softsign operation. |
Solve<T extends TType> |
Solves systems of linear equations. |
Sort<T extends TType> |
Wraps the XLA Sort operator, documented at
https://www.tensorflow.org/performance/xla/operation_semantics#sort
. |
SpaceToBatch<T extends TType> |
SpaceToBatch for 4-D tensors of type T. |
SpaceToBatchNd<T extends TType> |
SpaceToBatch for N-D tensors of type T. |
SpaceToDepth<T extends TType> |
SpaceToDepth for tensors of type T. |
SparseAccumulatorApplyGradient |
Applies a sparse gradient to a given accumulator. |
SparseAccumulatorTakeGradient<T extends TType> |
Extracts the average sparse gradient in a SparseConditionalAccumulator. |
SparseAdd<T extends TType> |
Adds two `SparseTensor` objects to produce another `SparseTensor`. |
SparseAddGrad<T extends TType> |
The gradient operator for the SparseAdd op. |
SparseApplyAdadelta<T extends TType> |
var: Should be from a Variable(). |
SparseApplyAdagrad<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
SparseApplyAdagradDa<T extends TType> |
Update entries in '*var' and '*accum' according to the proximal adagrad scheme. |
SparseApplyCenteredRmsProp<T extends TType> |
Update '*var' according to the centered RMSProp algorithm. |
SparseApplyFtrl<T extends TType> |
Update relevant entries in '*var' according to the Ftrl-proximal scheme. |
SparseApplyMomentum<T extends TType> |
Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
SparseApplyProximalAdagrad<T extends TType> |
Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. |
SparseApplyProximalGradientDescent<T extends TType> |
Sparse update '*var' as FOBOS algorithm with fixed learning rate. |
SparseApplyRmsProp<T extends TType> |
Update '*var' according to the RMSProp algorithm. |
SparseBincount<U extends TNumber> |
Counts the number of occurrences of each value in an integer array. |
SparseConcat<T extends TType> |
Concatenates a list of `SparseTensor` along the specified dimension. |
SparseConditionalAccumulator |
A conditional accumulator for aggregating sparse gradients. |
SparseCountSparseOutput<U extends TNumber> |
Performs sparse-output bin counting for a sparse tensor input. |
SparseCross |
Generates sparse cross from a list of sparse and dense tensors. |
SparseCrossHashed |
Generates sparse cross from a list of sparse and dense tensors. |
SparseDenseCwiseAdd<T extends TType> |
Adds up a SparseTensor and a dense Tensor, using these special rules:
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition. |
SparseDenseCwiseDiv<T extends TType> |
Component-wise divides a SparseTensor by a dense Tensor. |
SparseDenseCwiseMul<T extends TType> |
Component-wise multiplies a SparseTensor by a dense Tensor. |
SparseFillEmptyRows<T extends TType> |
Fills empty rows in the input 2-D `SparseTensor` with a default value. |
SparseFillEmptyRowsGrad<T extends TType> |
The gradient of SparseFillEmptyRows. |
SparseMatMul |
Multiply matrix "a" by matrix "b". |
SparseMatrixAdd |
Sparse addition of two CSR matrices, C = alpha * A + beta * B. |
SparseMatrixMatMul<T extends TType> |
Matrix-multiplies a sparse matrix with a dense matrix. |
SparseMatrixMul |
Element-wise multiplication of a sparse matrix with a dense tensor. |
SparseMatrixNNZ |
Returns the number of nonzeroes of `sparse_matrix`. |
SparseMatrixOrderingAMD |
Computes the Approximate Minimum Degree (AMD) ordering of `input`. |
SparseMatrixSoftmax |
Calculates the softmax of a CSRSparseMatrix. |
SparseMatrixSoftmaxGrad |
Calculates the gradient of the SparseMatrixSoftmax op. |
SparseMatrixSparseCholesky |
Computes the sparse Cholesky decomposition of `input`. |
SparseMatrixSparseMatMul |
Sparse-matrix-multiplies two CSR matrices `a` and `b`. |
SparseMatrixTranspose |
Transposes the inner (matrix) dimensions of a CSRSparseMatrix. |
SparseMatrixZeros |
Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. |
SparseReduceMax<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor. |
SparseReduceMaxSparse<T extends TNumber> |
Computes the max of elements across dimensions of a SparseTensor. |
SparseReduceSum<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor. |
SparseReduceSumSparse<T extends TType> |
Computes the sum of elements across dimensions of a SparseTensor. |
SparseReorder<T extends TType> |
Reorders a SparseTensor into the canonical, row-major ordering. |
SparseReshape |
Reshapes a SparseTensor to represent values in a new dense shape. |
SparseSegmentMean<T extends TNumber> |
Computes the mean along sparse segments of a tensor. |
SparseSegmentMeanGrad<T extends TNumber> |
Computes gradients for SparseSegmentMean. |
SparseSegmentMeanWithNumSegments<T extends TNumber> |
Computes the mean along sparse segments of a tensor. |
SparseSegmentSqrtN<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
SparseSegmentSqrtNGrad<T extends TNumber> |
Computes gradients for SparseSegmentSqrtN. |
SparseSegmentSqrtNWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor divided by the sqrt of N. |
SparseSegmentSum<T extends TNumber> |
Computes the sum along sparse segments of a tensor. |
SparseSegmentSumWithNumSegments<T extends TNumber> |
Computes the sum along sparse segments of a tensor. |
SparseSlice<T extends TType> |
Slice a `SparseTensor` based on the `start` and `size`. |
SparseSliceGrad<T extends TType> |
The gradient operator for the SparseSlice op. |
SparseSoftmax<T extends TNumber> |
Applies softmax to a batched N-D `SparseTensor`. |
SparseSoftmaxCrossEntropyWithLogits<T extends TNumber> |
Computes softmax cross entropy cost and gradients to backpropagate. |
SparseSparseMaximum<T extends TNumber> |
Returns the element-wise max of two SparseTensors. |
SparseSparseMinimum<T extends TType> |
Returns the element-wise min of two SparseTensors. |
SparseSplit<T extends TType> |
Split a `SparseTensor` into `num_split` tensors along one dimension. |
SparseTensorDenseAdd<U extends TType> |
Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. |
SparseTensorDenseMatMul<U extends TType> |
Multiply SparseTensor (of rank 2) "A" by dense matrix "B". |
SparseTensorSliceDataset |
Creates a dataset that splits a SparseTensor into elements row-wise. |
SparseTensorToCSRSparseMatrix |
Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. |
SparseToDense<U extends TType> |
Converts a sparse representation into a dense tensor. |
SparseToSparseSetOperation<T extends TType> |
Applies set operation along last dimension of 2 `SparseTensor` inputs. |
Spence<T extends TNumber> |
|
Split<T extends TType> |
Splits a tensor into `num_split` tensors along one dimension. |
SplitV<T extends TType> |
Splits a tensor into `num_split` tensors along one dimension. |
SqlDataset |
Creates a dataset that executes a SQL query and emits rows of the result set. |
Sqrt<T extends TType> |
Computes square root of x element-wise. |
SqrtGrad<T extends TType> |
Computes the gradient for the sqrt of `x` wrt its input. |
Sqrtm<T extends TType> |
Computes the matrix square root of one or more square matrices:
matmul(sqrtm(A), sqrtm(A)) = A
The input matrix should be invertible. |
Square<T extends TType> |
Computes square of x element-wise. |
SquaredDifference<T extends TType> |
Returns conj(x - y)(x - y) element-wise. |
Squeeze<T extends TType> |
Removes dimensions of size 1 from the shape of a tensor. |
Stack<T extends TType> |
Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. |
Stage |
Stage values similar to a lightweight Enqueue. |
StageClear |
Op removes all elements in the underlying container. |
StagePeek |
Op peeks at the values at the specified index. |
StageSize |
Op returns the number of elements in the underlying container. |
StatefulRandomBinomial<V extends TNumber> |
|
StatefulStandardNormal<U extends TType> |
Outputs random values from a normal distribution. |
StatefulTruncatedNormal<U extends TType> |
Outputs random values from a truncated normal distribution. |
StatefulUniform<U extends TType> |
Outputs random values from a uniform distribution. |
StatefulUniformFullInt<U extends TType> |
Outputs random integers from a uniform distribution. |
StatefulUniformInt<U extends TType> |
Outputs random integers from a uniform distribution. |
StatelessMultinomial<V extends TNumber> |
Draws samples from a multinomial distribution. |
StatelessParameterizedTruncatedNormal<V extends TNumber> |
|
StatelessRandomBinomial<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a binomial distribution. |
StatelessRandomGamma<V extends TNumber> |
Outputs deterministic pseudorandom random numbers from a gamma distribution. |
StatelessRandomGetKeyCounterAlg |
Picks the best algorithm based on device, and scrambles seed into key and counter. |
StatelessRandomNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution. |
StatelessRandomNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a normal distribution. |
StatelessRandomPoisson<W extends TNumber> |
Outputs deterministic pseudorandom random numbers from a Poisson distribution. |
StatelessRandomUniform<V extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution. |
StatelessRandomUniformFullInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformFullIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformInt<V extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformIntV2<U extends TNumber> |
Outputs deterministic pseudorandom random integers from a uniform distribution. |
StatelessRandomUniformV2<U extends TNumber> |
Outputs deterministic pseudorandom random values from a uniform distribution. |
StatelessSampleDistortedBoundingBox<T extends TNumber> |
Generate a randomly distorted bounding box for an image deterministically. |
StatelessTruncatedNormal<V extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution. |
StatelessTruncatedNormalV2<U extends TNumber> |
Outputs deterministic pseudorandom values from a truncated normal distribution. |
StaticRegexFullMatch |
Check if the input matches the regex pattern. |
StaticRegexReplace |
Replaces the match of pattern in input with rewrite. |
StatsAggregatorHandle |
|
StatsAggregatorSetSummaryWriter |
Set a summary_writer_interface to record statistics using given stats_aggregator. |
StatsAggregatorSummary |
Produces a summary of any statistics recorded by the given statistics manager. |
StopGradient<T extends TType> |
Stops gradient computation. |
StridedSlice<T extends TType> |
Return a strided slice from `input`. |
StridedSliceAssign<T extends TType> |
Assign `value` to the sliced l-value reference of `ref`. |
StridedSliceGrad<U extends TType> |
Returns the gradient of `StridedSlice`. |
StringFormat |
Formats a string template using a list of tensors. |
StringLength |
String lengths of `input`. |
StringNGrams<T extends TNumber> |
Creates ngrams from ragged string data. |
StringSplit |
Split elements of `source` based on `sep` into a `SparseTensor`. |
Strip |
Strip leading and trailing whitespaces from the Tensor. |
Sub<T extends TType> |
Returns x - y element-wise. |
Substr |
Return substrings from `Tensor` of strings. |
Sum<T extends TType> |
Computes the sum of elements across dimensions of a tensor. |
SummaryWriter |
|
Svd<T extends TType> |
Computes the eigen decomposition of a batch of self-adjoint matrices
(Note: Only real inputs are supported). |
SwitchCond<T extends TType> |
Forwards `data` to the output port determined by `pred`. |
TPUCompilationResult |
Returns the result of a TPU compilation. |
TPUEmbeddingActivations |
An op enabling differentiation of TPU Embeddings. |
TPUReplicateMetadata |
Metadata indicating how the TPU computation should be replicated. |
TPUReplicatedInput<T extends TType> |
Connects N inputs to an N-way replicated TPU computation. |
TPUReplicatedOutput<T extends TType> |
Connects N outputs from an N-way replicated TPU computation. |
TakeDataset |
Creates a dataset that contains `count` elements from the `input_dataset`. |
TakeManySparseFromTensorsMap<T extends TType> |
Read `SparseTensors` from a `SparseTensorsMap` and concatenate them. |
Tan<T extends TType> |
Computes tan of x element-wise. |
Tanh<T extends TType> |
Computes hyperbolic tangent of `x` element-wise. |
TanhGrad<T extends TType> |
Computes the gradient for the tanh of `x` wrt its input. |
TemporaryVariable<T extends TType> |
Returns a tensor that may be mutated, but only persists within a single step. |
TensorArray |
An array of Tensors of given size. |
TensorArrayClose |
Delete the TensorArray from its resource container. |
TensorArrayConcat<T extends TType> |
Concat the elements from the TensorArray into value `value`. |
TensorArrayGather<T extends TType> |
Gather specific elements from the TensorArray into output `value`. |
TensorArrayGrad |
Creates a TensorArray for storing the gradients of values in the given handle. |
TensorArrayGradWithShape |
Creates a TensorArray for storing multiple gradients of values in the given handle. |
TensorArrayPack<T extends TType> |
|
TensorArrayRead<T extends TType> |
Read an element from the TensorArray into output `value`. |
TensorArrayScatter |
Scatter the data from the input value into specific TensorArray elements. |
TensorArraySize |
Get the current size of the TensorArray. |
TensorArraySplit |
Split the data from the input value into TensorArray elements. |
TensorArrayUnpack |
|
TensorArrayWrite |
Push an element onto the tensor_array. |
TensorDataset |
Creates a dataset that emits `components` as a tuple of tensors once. |
TensorDiag<T extends TType> |
Returns a diagonal tensor with a given diagonal values. |
TensorDiagPart<T extends TType> |
Returns the diagonal part of the tensor. |
TensorForestCreateTreeVariable |
Creates a tree resource and returns a handle to it. |
TensorForestTreeDeserialize |
Deserializes a proto into the tree handle
|
TensorForestTreeIsInitializedOp |
Checks whether a tree has been initialized. |
TensorForestTreePredict |
Output the logits for the given input data
|
TensorForestTreeResourceHandleOp |
Creates a handle to a TensorForestTreeResource
|
TensorForestTreeSerialize |
Serializes the tree handle to a proto
|
TensorForestTreeSize |
Get the number of nodes in a tree
|
TensorListConcat<U extends TType> |
Concats all tensors in the list along the 0th dimension. |
TensorListConcatLists |
|
TensorListElementShape<T extends TNumber> |
The shape of the elements of the given list, as a tensor. |
TensorListFromTensor |
Creates a TensorList which, when stacked, has the value of `tensor`. |
TensorListGather<T extends TType> |
Creates a Tensor by indexing into the TensorList. |
TensorListGetItem<T extends TType> |
|
TensorListLength |
Returns the number of tensors in the input tensor list. |
TensorListPopBack<T extends TType> |
Returns the last element of the input list as well as a list with all but that element. |
TensorListPushBack |
Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. |
TensorListPushBackBatch |
|
TensorListReserve |
List of the given size with empty elements. |
TensorListResize |
Resizes the list. |
TensorListScatter |
Creates a TensorList by indexing into a Tensor. |
TensorListScatterIntoExistingList |
Scatters tensor at indices in an input list. |
TensorListSetItem |
|
TensorListSplit |
Splits a tensor into a list. |
TensorListStack<T extends TType> |
Stacks all tensors in the list. |
TensorMapErase |
Returns a tensor map with item from given key erased. |
TensorMapHasKey |
Returns whether the given key exists in the map. |
TensorMapInsert |
Returns a map that is the 'input_handle' with the given key-value pair inserted. |
TensorMapLookup<U extends TType> |
Returns the value from a given key in a tensor map. |
TensorMapSize |
Returns the number of tensors in the input tensor map. |
TensorMapStackKeys<T extends TType> |
Returns a Tensor stack of all keys in a tensor map. |
TensorScatterNdAdd<T extends TType> |
Adds sparse `updates` to an existing tensor according to `indices`. |
TensorScatterNdMax<T extends TType> |
|
TensorScatterNdMin<T extends TType> |
|
TensorScatterNdSub<T extends TType> |
Subtracts sparse `updates` from an existing tensor according to `indices`. |
TensorScatterNdUpdate<T extends TType> |
Scatter `updates` into an existing tensor according to `indices`. |
TensorSliceDataset |
Creates a dataset that emits each dim-0 slice of `components` once. |
TensorStridedSliceUpdate<T extends TType> |
Assign `value` to the sliced l-value reference of `input`. |
TensorSummary |
Outputs a `Summary` protocol buffer with a tensor and per-plugin data. |
TextLineDataset |
Creates a dataset that emits the lines of one or more text files. |
TextLineReader |
A Reader that outputs the lines of a file delimited by '\n'. |
TfRecordDataset |
Creates a dataset that emits the records from one or more TFRecord files. |
TfRecordReader |
A Reader that outputs the records from a TensorFlow Records file. |
ThreadPoolDataset |
Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
ThreadPoolHandle |
Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
Tile<T extends TType> |
Constructs a tensor by tiling a given tensor. |
TileGrad<T extends TType> |
Returns the gradient of `Tile`. |
Timestamp |
Provides the time since epoch in seconds. |
ToBool |
Converts a tensor to a scalar predicate. |
ToHashBucket |
Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToHashBucketFast |
Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToHashBucketStrong |
Converts each string in the input Tensor to its hash mod by a number of buckets. |
ToNumber<T extends TNumber> |
Converts each string in the input Tensor to the specified numeric type. |
TopK<T extends TNumber> |
Finds values and indices of the `k` largest elements for the last dimension. |
TopKUnique |
Returns the TopK unique values in the array in sorted order. |
TopKWithUnique |
Returns the TopK values in the array in sorted order. |
Transpose<T extends TType> |
Shuffle dimensions of x according to a permutation. |
TriangularSolve<T extends TType> |
Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. |
TridiagonalMatMul<T extends TType> |
Calculate product with tridiagonal matrix. |
TridiagonalSolve<T extends TType> |
Solves tridiagonal systems of equations. |
TruncateDiv<T extends TType> |
Returns x / y element-wise for integer types. |
TruncateMod<T extends TNumber> |
Returns element-wise remainder of division. |
TruncatedNormal<U extends TNumber> |
Outputs random values from a truncated normal distribution. |
TryRpc |
Perform batches of RPC requests. |
Unbatch<T extends TType> |
Reverses the operation of Batch for a single output Tensor. |
UnbatchDataset |
A dataset that splits the elements of its input into multiple elements. |
UnbatchGrad<T extends TType> |
Gradient of Unbatch. |
UncompressElement |
Uncompresses a compressed dataset element. |
UnicodeDecode<T extends TNumber> |
Decodes each string in `input` into a sequence of Unicode code points. |
UnicodeDecodeWithOffsets<T extends TNumber> |
Decodes each string in `input` into a sequence of Unicode code points. |
UnicodeEncode |
Encode a tensor of ints into unicode strings. |
UnicodeScript |
Determine the script codes of a given tensor of Unicode integer code points. |
UnicodeTranscode |
Transcode the input text from a source encoding to a destination encoding. |
UniformCandidateSampler |
Generates labels for candidate sampling with a uniform distribution. |
Unique<T extends TType, V extends TNumber> |
Finds unique elements along an axis of a tensor. |
UniqueDataset |
Creates a dataset that contains the unique elements of `input_dataset`. |
UniqueWithCounts<T extends TType, V extends TNumber> |
Finds unique elements along an axis of a tensor. |
UnravelIndex<T extends TNumber> |
Converts an array of flat indices into a tuple of coordinate arrays. |
UnsortedSegmentJoin |
Joins the elements of `inputs` based on `segment_ids`. |
UnsortedSegmentMax<T extends TNumber> |
Computes the maximum along segments of a tensor. |
UnsortedSegmentMin<T extends TNumber> |
Computes the minimum along segments of a tensor. |
UnsortedSegmentProd<T extends TType> |
Computes the product along segments of a tensor. |
UnsortedSegmentSum<T extends TType> |
Computes the sum along segments of a tensor. |
Unstack<T extends TType> |
Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. |
Unstage |
Op is similar to a lightweight Dequeue. |
UnwrapDatasetVariant |
|
Upper |
Converts all lowercase characters into their respective uppercase replacements. |
UpperBound<U extends TNumber> |
Applies upper_bound(sorted_search_values, values) along each row. |
VarHandleOp |
Creates a handle to a Variable resource. |
VarIsInitializedOp |
Checks whether a resource handle-based variable has been initialized. |
Variable<T extends TType> |
Holds state in the form of a tensor that persists across steps. |
VariableShape<T extends TNumber> |
Returns the shape of the variable pointed to by `resource`. |
Where |
Returns locations of nonzero / true values in a tensor. |
WholeFileReader |
A Reader that outputs the entire contents of a file as a value. |
WindowDataset |
Combines (nests of) input elements into a dataset of (nests of) windows. |
WorkerHeartbeat |
Worker heartbeat op. |
WrapDatasetVariant |
|
WriteAudioSummary |
Writes an audio summary. |
WriteFile |
Writes contents to the file at input filename. |
WriteGraphSummary |
Writes a graph summary. |
WriteHistogramSummary |
Writes a histogram summary. |
WriteImageSummary |
Writes an image summary. |
WriteRawProtoSummary |
Writes a serialized proto summary. |
WriteScalarSummary |
Writes a scalar summary. |
WriteSummary |
Writes a tensor summary. |
Xdivy<T extends TType> |
Returns 0 if x == 0, and x / y otherwise, elementwise. |
XlaRecvFromHost<T extends TType> |
An op to receive a tensor from the host. |
XlaSendToHost |
An op to send a tensor to the host. |
XlaSetBound |
Set a bound for the given input value as a hint to Xla compiler,
returns the same value. |
XlaSpmdFullToShardShape<T extends TType> |
An op used by XLA SPMD partitioner to switch from automatic partitioning to
manual partitioning. |
XlaSpmdShardToFullShape<T extends TType> |
An op used by XLA SPMD partitioner to switch from manual partitioning to
automatic partitioning. |
Xlog1py<T extends TType> |
Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. |
Xlogy<T extends TType> |
Returns 0 if x == 0, and x * log(y) otherwise, elementwise. |
Zeros<T extends TType> |
An operator creating a constant initialized with zeros of the shape given by `dims`. |
ZerosLike<T extends TType> |
Returns a tensor of zeros with the same shape and type as x. |
Zeta<T extends TNumber> |
Compute the Hurwitz zeta function \\(\zeta(x, q)\\). |
ZipDataset |
Creates a dataset that zips together `input_datasets`. |
erfinv<T extends TNumber> |
|