View source on GitHub |
Datasets for running TensorFlow Federated simulations.
Modules
celeba
module: Libraries for the federated CelebA dataset for simulation.
cifar100
module: Libraries for the federated CIFAR-100 dataset for simulation.
emnist
module: Libraries for the federated EMNIST dataset for simulation.
flair
module: Libraries for loading the FLAIR dataset.
gldv2
module: Libraries for the federated Google Landmark v2 dataset for simulation.
inaturalist
module: Libraries for the federated iNaturalist dataset for simulation.
shakespeare
module: Libraries for the Shakespeare dataset for federated learning simulation.
stackoverflow
module: Libraries for the Stackoverflow dataset for federated learning simulation.
Classes
class ClientData
: Object to hold a federated dataset.
class FilePerUserClientData
: A tff.simulation.datasets.ClientData
that maps a set of files to a dataset.
class SqlClientData
: A tff.simulation.datasets.ClientData
backed by an SQL file.
class TestClientData
: A tff.simulation.datasets.ClientData
intended for test purposes.
class TransformingClientData
: Transforms client data, potentially expanding by adding pseudo-clients.
Functions
build_dataset_mixture(...)
: Build a new dataset that probabilistically returns examples.
build_single_label_dataset(...)
: Build a new dataset that only yields examples with a particular label.
build_synthethic_iid_datasets(...)
: Constructs an iterable of IID clients from a tff.simulation.datasets.ClientData
.
load_and_parse_sql_client_data(...)
: Load a ClientData
arises by parsing a serialized SqlClientData
.
save_to_sql_client_data(...)
: Serialize a federated dataset into a SQL database compatible with SqlClientData
.