View source on GitHub |
A tff.templates.EstimationProcess
for estimating private quantiles.
Inherits From: EstimationProcess
, IterativeProcess
tff.aggregators.PrivateQuantileEstimationProcess(
quantile_estimator_query: tfp.QuantileEstimatorQuery,
record_aggregation_factory: Optional[tff.aggregators.UnweightedAggregationFactory
] = None
)
Used in the notebooks
Used in the tutorials |
---|
This iterative process uses a tensorflow_privacy.QuantileEstimatorQuery
to
maintain an estimate of the target quantile that is updated after each round.
The next
function has the following type signature:
(<{state_type}@SERVER,{float32}@CLIENTS> -> {state_type}@SERVER)
Given a state
of type state_type
, the most recent estimate of the target
quantile can be retrieved using report(state)
.
Args | |
---|---|
quantile_estimator_query
|
A tfp.QuantileEstimatorQuery for estimating
quantiles with differential privacy.
|
record_aggregation_factory
|
An optional
tff.aggregators.UnweightedAggregationFactory to aggregate counts of
values below the current estimate. If None , defaults to
tff.aggregators.SumFactory .
|
Attributes | |
---|---|
initialize
|
A no-arg tff.Computation that returns the initial state.
|
next
|
A tff.Computation that produces the next state.
Its first argument should always be the current state (originally produced
by |
report
|
A tff.Computation that computes the current estimate from state .
Given a |
state_type
|
The tff.Type of the state of the process.
|
Methods
map
map(
map_fn: tff.Computation
)
Applies map_fn
to the estimate function of the process.
This method will return a new instance of EstimationProcess
with the same
initailize
and next
functions, and its report
function replaced by
map_fn(report(state))
.
Args | |
---|---|
map_fn
|
A tff.Computation to apply to the result of the report
function of the process. Must accept the return type of report .
|
Returns | |
---|---|
An EstimationProcess .
|
Raises | |
---|---|
EstimateNotAssignableError
|
If the return type of report is not
assignable to the expected input type of map_fn .
|
no_noise
@classmethod
no_noise( initial_estimate: float, target_quantile: float, learning_rate: float, multiplier: float = 1.0, increment: float = 0.0, secure_estimation: bool = False )
No-noise estimator for affine function of value at quantile.
Estimates value C
at q
'th quantile of input distribution and reports
rC + i
for multiplier r
and increment i
. The quantile C
is estimated
using the geometric method described in Andrew, Thakkar et al. 2021,
"Differentially Private Learning with Adaptive Clipping"
(https://arxiv.org/abs/1905.03871) without noise added.
Note that this estimator does not add noise, so it does not guarantee differential privacy. It is useful for estimating quantiles in contexts where rigorous privacy guarantees are not needed.
Args | |
---|---|
initial_estimate
|
The initial estimate of C .
|
target_quantile
|
The quantile q to which C will be adapted.
|
learning_rate
|
The learning rate for the adaptive algorithm. |
multiplier
|
The multiplier r of the affine transform.
|
increment
|
The increment i of the affine transform.
|
secure_estimation
|
Whether to perform the aggregation for estimation using
tff.aggregators.SumFactory (if False ; default) or
tff.aggregators.SecureSumFactory (if True ).
|
Returns | |
---|---|
An EstimationProcess whose report function returns rC + i .
|