utaustin_mutex

  • وصف :

مهام التلاعب المنزلية المتنوعة

ينقسم أمثلة
'train' 1500
  • هيكل الميزة :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [6x end effector delta pose, 1x gripper position]),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(24,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper position, 16x robot end-effector homogeneous matrix].),
            'wrist_image': Image(shape=(128, 128, 3), dtype=uint8, description=Wrist camera RGB observation.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
الحلقة_البيانات الوصفية المميزاتDict
Episode_metadata/file_path نص خيط المسار إلى ملف البيانات الأصلي.
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (7،) float32 عمل الروبوت، يتكون من [وضعية دلتا المؤثر النهائي 6x، موضع المقبض 1x]
الخطوات/الخصم العددية float32 الخصم إذا تم توفيره، الافتراضي هو 1.
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/language_embedding الموتر (512،) float32 تضمين لغة كونا. راجع https://tfhub.dev/google/universal-sentence-encoder-large/5
الخطوات/language_instruction نص خيط تعليمات اللغة التفصيلية لكل مهمة.
الخطوات/الملاحظة المميزاتDict
الخطوات/الملاحظة/الصورة صورة (128، 128، 3) uint8 مراقبة الكاميرا الرئيسية RGB.
الخطوات/الملاحظة/الحالة الموتر (24،) float32 تتكون حالة الروبوت من [7x زوايا مفصل الروبوت، 1x موضع القابض، 16x مصفوفة متجانسة للمؤثرات النهائية للروبوت].
الخطوات/الملاحظة/wrist_image صورة (128، 128، 3) uint8 مراقبة كاميرا المعصم RGB.
خطوات/مكافأة العددية float32 مكافأة إذا تم توفيرها، 1 في الخطوة النهائية للعروض التوضيحية.
@inproceedings{
    shah2023mutex,
    title={ {MUTEX}: Learning Unified Policies from Multimodal Task Specifications},
    author={Rutav Shah and Roberto Mart{\'\i}n-Mart{\'\i}n and Yuke Zhu},
    booktitle={7th Annual Conference on Robot Learning},
    year={2023},
    url={https://openreview.net/forum?id=PwqiqaaEzJ}
}