- Descrição :
trajetória de planejamento de movimento de tarefas de escolha de local
Página inicial : https://journals.sagepub.com/doi/full/10.1177/02783649211044405
Código fonte :
tfds.robotics.rtx.TokyoULsmoConvertedExternallyToRlds
Versões :
-
0.1.0
(padrão): versão inicial.
-
Tamanho do download :
Unknown size
Tamanho do conjunto de dados :
335.71 MiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'train' | 50 |
- Estrutura de recursos :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x endeffector position, 3x euler angles,1x gripper action].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(120, 120, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(13,), dtype=float32, description=Robot state, consists of [3x endeffector position, 3x euler angles,6x robot joint angles, 1x gripper position].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Documentação de recursos :
Recurso | Aula | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
episódio_metadados | RecursosDict | |||
episódio_metadados/caminho_do_arquivo | Texto | corda | Caminho para o arquivo de dados original. | |
passos | Conjunto de dados | |||
etapas/ação | Tensor | (7,) | float32 | A ação do robô consiste em [3x posição do efetor final, 3x ângulos de Euler, 1x ação da pinça]. |
passos/desconto | Escalar | float32 | Desconto, se fornecido, o padrão é 1. | |
passos/é_primeiro | Tensor | bool | ||
passos/é_último | Tensor | bool | ||
etapas/is_terminal | Tensor | bool | ||
etapas/idioma_incorporação | Tensor | (512,) | float32 | Incorporação da linguagem Kona. Consulte https://tfhub.dev/google/universal-sentence-encoder-large/5 |
etapas/instrução_idioma | Texto | corda | Instrução de Idiomas. | |
etapas/observação | RecursosDict | |||
passos/observação/imagem | Imagem | (120, 120, 3) | uint8 | Observação RGB da câmera principal. |
etapas/observação/estado | Tensor | (13,) | float32 | O estado do robô consiste em [3x posição do efetor final, 3x ângulos de Euler, 6x ângulos de articulação do robô, 1x posição da pinça]. |
passos/recompensa | Escalar | float32 | Recompensa, se fornecida, 1 na etapa final para demonstrações. |
Chaves supervisionadas (consulte o documento
as_supervised
):None
Figura ( tfds.show_examples ): Não suportado.
Exemplos ( tfds.as_dataframe ): Ausente.
Citação :
@Article{Osa22,
author = {Takayuki Osa},
journal = {The International Journal of Robotics Research},
title = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
year = {2022},
number = {3},
pages = {291--311},
volume = {41},
}