- Descripción :
trayectoria de planificación de movimiento de tareas de lugar de selección
Página de inicio : https://journals.sagepub.com/doi/full/10.1177/02783649211044405
Código fuente :
tfds.robotics.rtx.TokyoULsmoConvertedExternallyToRlds
Versiones :
-
0.1.0
(predeterminado): versión inicial.
-
Tamaño de descarga :
Unknown size
Tamaño del conjunto de datos :
335.71 MiB
Almacenamiento en caché automático ( documentación ): No
Divisiones :
Dividir | Ejemplos |
---|---|
'train' | 50 |
- Estructura de características :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x endeffector position, 3x euler angles,1x gripper action].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(120, 120, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(13,), dtype=float32, description=Robot state, consists of [3x endeffector position, 3x euler angles,6x robot joint angles, 1x gripper position].),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Documentación de funciones :
Característica | Clase | Forma | tipo D | Descripción |
---|---|---|---|---|
FuncionesDict | ||||
episodio_metadatos | FuncionesDict | |||
metadatos_episodio/ruta_archivo | Texto | cadena | Ruta al archivo de datos original. | |
pasos | Conjunto de datos | |||
pasos/acción | Tensor | (7,) | flotador32 | La acción del robot consta de [3x posición del efector final, 3x ángulos de Euler, 1x acción de pinza]. |
pasos/descuento | Escalar | flotador32 | Descuento si se proporciona, el valor predeterminado es 1. | |
pasos/es_primero | Tensor | booleano | ||
pasos/es_último | Tensor | booleano | ||
pasos/es_terminal | Tensor | booleano | ||
pasos/idioma_incrustación | Tensor | (512,) | flotador32 | Incorporación del lenguaje Kona. Consulte https://tfhub.dev/google/universal-sentence-encoder-large/5 |
pasos/instrucción_idioma | Texto | cadena | Instrucción de idiomas. | |
pasos/observación | FuncionesDict | |||
pasos/observación/imagen | Imagen | (120, 120, 3) | uint8 | Observación RGB de la cámara principal. |
pasos/observación/estado | Tensor | (13,) | flotador32 | El estado del robot consta de [3x posición del efector final, 3x ángulos de Euler, 6x ángulos de articulación del robot, 1x posición de pinza]. |
pasos/recompensa | Escalar | flotador32 | Recompensa si se proporciona, 1 en el paso final para demostraciones. |
Claves supervisadas (ver documento
as_supervised
):None
Figura ( tfds.show_examples ): no compatible.
Ejemplos ( tfds.as_dataframe ): Falta.
Cita :
@Article{Osa22,
author = {Takayuki Osa},
journal = {The International Journal of Robotics Research},
title = {Motion Planning by Learning the Solution Manifold in Trajectory Optimization},
year = {2022},
number = {3},
pages = {291--311},
volume = {41},
}