nyu_franka_play_dataset_converted_externally_to_rlds

  • বর্ণনা :

ফ্রাঙ্কা খেলনা রান্নাঘরের সাথে যোগাযোগ করছে

বিভক্ত উদাহরণ
'train' 365
'val' 91
  • বৈশিষ্ট্য গঠন :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(15,), dtype=float32, description=Robot action, consists of [7x joint velocities, 3x EE delta xyz, 3x EE delta rpy, 1x gripper position, 1x terminate episode].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'depth': Tensor(shape=(128, 128, 1), dtype=int32, description=Right camera depth observation.),
            'depth_additional_view': Tensor(shape=(128, 128, 1), dtype=int32, description=Left camera depth observation.),
            'image': Image(shape=(128, 128, 3), dtype=uint8, description=Right camera RGB observation.),
            'image_additional_view': Image(shape=(128, 128, 3), dtype=uint8, description=Left camera RGB observation.),
            'state': Tensor(shape=(13,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 3x EE xyz, 3x EE rpy.),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • বৈশিষ্ট্য ডকুমেন্টেশন :
বৈশিষ্ট্য ক্লাস আকৃতি ডিটাইপ বর্ণনা
ফিচারসডিক্ট
episode_metadata ফিচারসডিক্ট
episode_metadata/file_path পাঠ্য স্ট্রিং মূল ডেটা ফাইলের পথ।
পদক্ষেপ ডেটাসেট
পদক্ষেপ/ক্রিয়া টেনসর (15,) float32 রোবট অ্যাকশন, [7x জয়েন্ট বেগ, 3x EE ডেল্টা xyz, 3x EE ডেল্টা rpy, 1x গ্রিপার অবস্থান, 1x টার্মিনেট পর্ব] নিয়ে গঠিত।
পদক্ষেপ/ছাড় স্কেলার float32 ডিসকাউন্ট দেওয়া হলে, ডিফল্ট 1.
steps/is_first টেনসর bool
ধাপ/শেষ_শেষ টেনসর bool
steps/is_terminal টেনসর bool
পদক্ষেপ/ভাষা_এম্বেডিং টেনসর (512,) float32 কোন ভাষা এম্বেডিং. https://tfhub.dev/google/universal-sentence-encoder-large/5 দেখুন
পদক্ষেপ/ভাষা_নির্দেশ পাঠ্য স্ট্রিং ভাষার নির্দেশনা।
পদক্ষেপ/পর্যবেক্ষণ ফিচারসডিক্ট
পদক্ষেপ/পর্যবেক্ষণ/গভীরতা টেনসর (128, 128, 1) int32 ডান ক্যামেরার গভীরতা পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/গভীর_অতিরিক্ত_দর্শন টেনসর (128, 128, 1) int32 বাম ক্যামেরার গভীরতা পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/চিত্র ছবি (128, 128, 3) uint8 ডান ক্যামেরা আরজিবি পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/ছবি_অতিরিক্ত_দর্শন ছবি (128, 128, 3) uint8 বাম ক্যামেরা আরজিবি পর্যবেক্ষণ।
পদক্ষেপ/পর্যবেক্ষণ/রাষ্ট্র টেনসর (13,) float32 রোবট অবস্থা, [7x রোবট যুগ্ম কোণ, 3x EE xyz, 3x EE rpy নিয়ে গঠিত।
পদক্ষেপ/পুরস্কার স্কেলার float32 প্রদান করা হলে পুরস্কার, ডেমোর জন্য চূড়ান্ত ধাপে 1।
  • উদ্ধৃতি :
@article{cui2022play,
  title   = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
  author  = {Cui, Zichen Jeff and Wang, Yibin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
  journal = {arXiv preprint arXiv:2210.10047},
  year    = {2022}
}