- বর্ণনা :
ফ্রাঙ্কা খেলনা রান্নাঘরের সাথে যোগাযোগ করছে
হোমপেজ : https://play-to-policy.github.io/
উত্স কোড :
tfds.robotics.rtx.NyuFrankaPlayDatasetConvertedExternallyToRlds
সংস্করণ :
-
0.1.0
(ডিফল্ট): প্রাথমিক প্রকাশ।
-
ডাউনলোড আকার :
Unknown size
ডেটাসেটের আকার :
5.18 GiB
স্বয়ংক্রিয় ক্যাশে ( ডকুমেন্টেশন ): না
বিভাজন :
বিভক্ত | উদাহরণ |
---|---|
'train' | 365 |
'val' | 91 |
- বৈশিষ্ট্য গঠন :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(15,), dtype=float32, description=Robot action, consists of [7x joint velocities, 3x EE delta xyz, 3x EE delta rpy, 1x gripper position, 1x terminate episode].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'depth': Tensor(shape=(128, 128, 1), dtype=int32, description=Right camera depth observation.),
'depth_additional_view': Tensor(shape=(128, 128, 1), dtype=int32, description=Left camera depth observation.),
'image': Image(shape=(128, 128, 3), dtype=uint8, description=Right camera RGB observation.),
'image_additional_view': Image(shape=(128, 128, 3), dtype=uint8, description=Left camera RGB observation.),
'state': Tensor(shape=(13,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 3x EE xyz, 3x EE rpy.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- বৈশিষ্ট্য ডকুমেন্টেশন :
বৈশিষ্ট্য | ক্লাস | আকৃতি | ডিটাইপ | বর্ণনা |
---|---|---|---|---|
ফিচারসডিক্ট | ||||
episode_metadata | ফিচারসডিক্ট | |||
episode_metadata/file_path | পাঠ্য | স্ট্রিং | মূল ডেটা ফাইলের পথ। | |
পদক্ষেপ | ডেটাসেট | |||
পদক্ষেপ/ক্রিয়া | টেনসর | (15,) | float32 | রোবট অ্যাকশন, [7x জয়েন্ট বেগ, 3x EE ডেল্টা xyz, 3x EE ডেল্টা rpy, 1x গ্রিপার অবস্থান, 1x টার্মিনেট পর্ব] নিয়ে গঠিত। |
পদক্ষেপ/ছাড় | স্কেলার | float32 | ডিসকাউন্ট দেওয়া হলে, ডিফল্ট 1. | |
steps/is_first | টেনসর | bool | ||
ধাপ/শেষ_শেষ | টেনসর | bool | ||
steps/is_terminal | টেনসর | bool | ||
পদক্ষেপ/ভাষা_এম্বেডিং | টেনসর | (512,) | float32 | কোন ভাষা এম্বেডিং. https://tfhub.dev/google/universal-sentence-encoder-large/5 দেখুন |
পদক্ষেপ/ভাষা_নির্দেশ | পাঠ্য | স্ট্রিং | ভাষার নির্দেশনা। | |
পদক্ষেপ/পর্যবেক্ষণ | ফিচারসডিক্ট | |||
পদক্ষেপ/পর্যবেক্ষণ/গভীরতা | টেনসর | (128, 128, 1) | int32 | ডান ক্যামেরার গভীরতা পর্যবেক্ষণ। |
পদক্ষেপ/পর্যবেক্ষণ/গভীর_অতিরিক্ত_দর্শন | টেনসর | (128, 128, 1) | int32 | বাম ক্যামেরার গভীরতা পর্যবেক্ষণ। |
পদক্ষেপ/পর্যবেক্ষণ/চিত্র | ছবি | (128, 128, 3) | uint8 | ডান ক্যামেরা আরজিবি পর্যবেক্ষণ। |
পদক্ষেপ/পর্যবেক্ষণ/ছবি_অতিরিক্ত_দর্শন | ছবি | (128, 128, 3) | uint8 | বাম ক্যামেরা আরজিবি পর্যবেক্ষণ। |
পদক্ষেপ/পর্যবেক্ষণ/রাষ্ট্র | টেনসর | (13,) | float32 | রোবট অবস্থা, [7x রোবট যুগ্ম কোণ, 3x EE xyz, 3x EE rpy নিয়ে গঠিত। |
পদক্ষেপ/পুরস্কার | স্কেলার | float32 | প্রদান করা হলে পুরস্কার, ডেমোর জন্য চূড়ান্ত ধাপে 1। |
তত্ত্বাবধান করা কী (দেখুন
as_supervised
doc ):None
চিত্র ( tfds.show_examples ): সমর্থিত নয়।
উদাহরণ ( tfds.as_dataframe ):
- উদ্ধৃতি :
@article{cui2022play,
title = {From Play to Policy: Conditional Behavior Generation from Uncurated Robot Data},
author = {Cui, Zichen Jeff and Wang, Yibin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal = {arXiv preprint arXiv:2210.10047},
year = {2022}
}