- Descrição :
Franka escolhendo objetos e tarefas de inserção
Página inicial : https://openreview.net/forum?id=WuBv9-IGDUA
Código fonte :
tfds.robotics.rtx.IamlabCmuPickupInsertConvertedExternallyToRlds
Versões :
-
0.1.0
(padrão): versão inicial.
-
Tamanho do download :
Unknown size
Tamanho do conjunto de dados :
50.29 GiB
Armazenado em cache automaticamente ( documentação ): Não
Divisões :
Dividir | Exemplos |
---|---|
'train' | 631 |
- Estrutura de recursos :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [3x end-effector position, 4x end-effector quaternion, 1x gripper open/close].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(360, 640, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(20,), dtype=float32, description=Robot state, consists of [7x robot joint angles, 1x gripper status, 6x joint torques, 6x end-effector force].),
'wrist_image': Image(shape=(240, 320, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- Documentação de recursos :
Recurso | Aula | Forma | Tipo D | Descrição |
---|---|---|---|---|
RecursosDict | ||||
episódio_metadados | RecursosDict | |||
episódio_metadados/caminho_do_arquivo | Texto | corda | Caminho para o arquivo de dados original. | |
passos | Conjunto de dados | |||
etapas/ação | Tensor | (8,) | float32 | A ação do robô consiste em [3x posição do atuador final, 4x quaternion do atuador final, 1x pinça aberta/fechada]. |
passos/desconto | Escalar | float32 | Desconto, se fornecido, o padrão é 1. | |
passos/é_primeiro | Tensor | bool | ||
passos/é_último | Tensor | bool | ||
etapas/is_terminal | Tensor | bool | ||
etapas/idioma_incorporação | Tensor | (512,) | float32 | Incorporação da linguagem Kona. Consulte https://tfhub.dev/google/universal-sentence-encoder-large/5 |
etapas/instrução_idioma | Texto | corda | Instrução de Idiomas. | |
etapas/observação | RecursosDict | |||
passos/observação/imagem | Imagem | (360, 640, 3) | uint8 | Observação RGB da câmera principal. |
etapas/observação/estado | Tensor | (20,) | float32 | O estado do robô consiste em [7x ângulos de junta do robô, 1x status da garra, 6x torques de junta, 6x força do efetor final]. |
passos/observação/imagem_de_pulso | Imagem | (240, 320, 3) | uint8 | Observação RGB da câmera de pulso. |
passos/recompensa | Escalar | float32 | Recompensa, se fornecida, 1 na etapa final para demonstrações. |
Chaves supervisionadas (consulte o documento
as_supervised
):None
Figura ( tfds.show_examples ): Não suportado.
Exemplos ( tfds.as_dataframe ):
- Citação :
@inproceedings{
saxena2023multiresolution,
title={Multi-Resolution Sensing for Real-Time Control with Vision-Language Models},
author={Saumya Saxena and Mohit Sharma and Oliver Kroemer},
booktitle={7th Annual Conference on Robot Learning},
year={2023},
url={https://openreview.net/forum?id=WuBv9-IGDUA}
}