dlr_sara_grid_clamp_converted_ex externally_to_rlds

  • विवरण :

ग्रिड क्लैंप को मेज पर ग्रिड पर रखें

विभाजित करना उदाहरण
'train' 107
  • फ़ीचर संरचना :
FeaturesDict({
    'episode_metadata': FeaturesDict({
        'file_path': Text(shape=(), dtype=string),
    }),
    'steps': Dataset({
        'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler(="zxy") Class].),
        'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
        'language_instruction': Text(shape=(), dtype=string),
        'observation': FeaturesDict({
            'image': Image(shape=(480, 640, 3), dtype=uint8, description=Main camera RGB observation.),
            'state': Tensor(shape=(12,), dtype=float32, description=Robot state, consists of [3x robot EEF position, 3x robot EEF orientation yaw/pitch/roll calculated with scipy Rotation.as_euler("zxy") Class, 6x robot EEF wrench].),
        }),
        'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
    }),
})
  • फ़ीचर दस्तावेज़ीकरण :
विशेषता कक्षा आकार डीप्रकार विवरण
फीचर्सडिक्ट
एपिसोड_मेटाडेटा फीचर्सडिक्ट
एपिसोड_मेटाडेटा/फ़ाइल_पथ मूलपाठ डोरी मूल डेटा फ़ाइल का पथ.
कदम डेटासेट
कदम/कार्रवाई टेन्सर (7,) फ्लोट32 रोबोट एक्शन में [3x रोबोट ईईएफ स्थिति, 3x रोबोट ईईएफ ओरिएंटेशन यॉ/पिच/रोल की गणना scipy Rotation.as_euler(='zxy'' क्लास) के साथ की जाती है।
कदम/छूट अदिश फ्लोट32 यदि छूट प्रदान की गई है, तो डिफ़ॉल्ट 1 है।
चरण/पहला है टेन्सर बूल
चरण/अंतिम है टेन्सर बूल
चरण/is_terminal टेन्सर बूल
चरण/भाषा_एम्बेडिंग टेन्सर (512,) फ्लोट32 कोना भाषा एम्बेडिंग. https://tfhub.dev/google/universal-sentence-encoder-large/5 देखें
चरण/भाषा_निर्देश मूलपाठ डोरी मग में डालो.
चरण/अवलोकन फीचर्सडिक्ट
चरण/अवलोकन/छवि छवि (480, 640, 3) uint8 मुख्य कैमरा आरजीबी अवलोकन।
चरण/अवलोकन/स्थिति टेन्सर (12,) फ्लोट32 रोबोट स्थिति में [3x रोबोट ईईएफ स्थिति, 3x रोबोट ईईएफ ओरिएंटेशन यॉ/पिच/रोल की गणना scipy Rotation.as_euler("zxy") क्लास, 6x रोबोट ईईएफ रिंच] के साथ की जाती है।
कदम/इनाम अदिश फ्लोट32 यदि प्रदान किया गया तो इनाम, डेमो के लिए अंतिम चरण पर 1।
  • उद्धरण :
@article{padalkar2023guided,
  title={A guided reinforcement learning approach using shared control templates for learning manipulation skills in the real world},
  author={Padalkar, Abhishek and Quere, Gabriel and Raffin, Antonin and Silv{\'e}rio, Jo{\~a}o and Stulp, Freek},
  journal={Research square preprint rs-3289569/v1},
  year={2023}
}