d4rl_mujoco_hopper

  • وصف :

D4RL هو معيار مفتوح المصدر للتعلم المعزز دون الاتصال بالإنترنت. يوفر بيئات ومجموعات بيانات موحدة للتدريب وقياس الخوارزميات.

تتبع مجموعات البيانات تنسيق RLDS لتمثيل الخطوات والحلقات.

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_hopper/v0-expert (التكوين الافتراضي)

  • حجم التحميل : 51.56 MiB

  • حجم مجموعة البيانات : 64.10 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 1,029
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v0-medium

  • حجم التحميل : 51.74 MiB

  • حجم مجموعة البيانات : 64.68 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 3,064
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v0-medium-expert

  • حجم التحميل : 62.01 MiB

  • حجم مجموعة البيانات : 77.25 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 2,277
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v0-mixed

  • حجم التحميل : 10.48 MiB

  • حجم مجموعة البيانات : 13.15 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 1,250
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v0-random

  • حجم التحميل : 51.83 MiB

  • حجم مجموعة البيانات : 66.06 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 8,793
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v1-expert

  • حجم التحميل : 93.19 MiB

  • حجم مجموعة البيانات : 608.03 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): لا

  • الإنشقاقات :

ينقسم أمثلة
'train' 1,836
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 11), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(6,), dtype=float32),
            'qvel': Tensor(shape=(6,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
سياسة المميزاتDict
سياسة/fc0 المميزاتDict
سياسة/fc0/bias الموتر (256،) float32
سياسة/fc0/الوزن الموتر (256، 11) float32
سياسة/fc1 المميزاتDict
سياسة/fc1/bias الموتر (256،) float32
السياسة/fc1/الوزن الموتر (256، 256) float32
سياسة/last_fc المميزاتDict
سياسة/last_fc/bias الموتر (3،) float32
سياسة/last_fc/weight الموتر (3، 256) float32
سياسة/last_fc_log_std المميزاتDict
سياسة/last_fc_log_std/bias الموتر (3،) float32
سياسة/last_fc_log_std/weight الموتر (3، 256) float32
السياسة/اللاخطية الموتر خيط
سياسة/output_distribution الموتر خيط
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float32
الخطوات/المعلومات/qpos الموتر (6،) float32
الخطوات/المعلومات/qvel الموتر (6،) float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v1-medium

  • حجم التحميل : 92.03 MiB

  • حجم مجموعة البيانات : 1.78 GiB

  • التخزين المؤقت التلقائي ( الوثائق ): لا

  • الإنشقاقات :

ينقسم أمثلة
'train' 6,328
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 11), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(6,), dtype=float32),
            'qvel': Tensor(shape=(6,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
سياسة المميزاتDict
سياسة/fc0 المميزاتDict
سياسة/fc0/bias الموتر (256،) float32
سياسة/fc0/الوزن الموتر (256، 11) float32
سياسة/fc1 المميزاتDict
سياسة/fc1/bias الموتر (256،) float32
السياسة/fc1/الوزن الموتر (256، 256) float32
سياسة/last_fc المميزاتDict
سياسة/last_fc/bias الموتر (3،) float32
سياسة/last_fc/weight الموتر (3، 256) float32
سياسة/last_fc_log_std المميزاتDict
سياسة/last_fc_log_std/bias الموتر (3،) float32
سياسة/last_fc_log_std/weight الموتر (3، 256) float32
السياسة/اللاخطية الموتر خيط
سياسة/output_distribution الموتر خيط
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float32
الخطوات/المعلومات/qpos الموتر (6،) float32
الخطوات/المعلومات/qvel الموتر (6،) float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v1-medium-expert

  • حجم التحميل : 184.59 MiB

  • حجم مجموعة البيانات : 230.24 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): فقط عندما shuffle_files=False (القطار)

  • الإنشقاقات :

ينقسم أمثلة
'train' 8,163
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(6,), dtype=float32),
            'qvel': Tensor(shape=(6,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float32
الخطوات/المعلومات/qpos الموتر (6،) float32
الخطوات/المعلومات/qvel الموتر (6،) float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v1-medium-replay

  • حجم التحميل : 55.65 MiB

  • حجم مجموعة البيانات : 34.78 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 1,151
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float64),
        'reward': float64,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float64
الخطوات/الخصم الموتر float64
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float64
خطوات/مكافأة الموتر float64

d4rl_mujoco_hopper/v1-full-replay

  • حجم التحميل : 183.32 MiB

  • حجم مجموعة البيانات : 114.78 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 2,907
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float64),
        'reward': float64,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float64
الخطوات/الخصم الموتر float64
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float64
خطوات/مكافأة الموتر float64

d4rl_mujoco_hopper/v1-random

  • حجم التحميل : 91.11 MiB

  • حجم مجموعة البيانات : 130.73 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): فقط عندما shuffle_files=False (القطار)

  • الإنشقاقات :

ينقسم أمثلة
'train' 45,265
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(6,), dtype=float32),
            'qvel': Tensor(shape=(6,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float32
الخطوات/المعلومات/qpos الموتر (6،) float32
الخطوات/المعلومات/qvel الموتر (6،) float32
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v2-expert

  • حجم التحميل : 145.37 MiB

  • حجم مجموعة البيانات : 390.40 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): لا

  • الإنشقاقات :

ينقسم أمثلة
'train' 1,028
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 11), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
سياسة المميزاتDict
سياسة/fc0 المميزاتDict
سياسة/fc0/bias الموتر (256،) float32
سياسة/fc0/الوزن الموتر (256، 11) float32
سياسة/fc1 المميزاتDict
سياسة/fc1/bias الموتر (256،) float32
السياسة/fc1/الوزن الموتر (256، 256) float32
سياسة/last_fc المميزاتDict
سياسة/last_fc/bias الموتر (3،) float32
سياسة/last_fc/weight الموتر (3، 256) float32
سياسة/last_fc_log_std المميزاتDict
سياسة/last_fc_log_std/bias الموتر (3،) float32
سياسة/last_fc_log_std/weight الموتر (3، 256) float32
السياسة/اللاخطية الموتر خيط
سياسة/output_distribution الموتر خيط
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v2-full-replay

  • حجم التحميل : 179.29 MiB

  • حجم مجموعة البيانات : 115.04 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 3,515
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v2-medium

  • حجم التحميل : 145.68 MiB

  • حجم مجموعة البيانات : 702.57 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): لا

  • الإنشقاقات :

ينقسم أمثلة
'train' 2,187
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 11), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(3,), dtype=float32),
            'weight': Tensor(shape=(3, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
سياسة المميزاتDict
سياسة/fc0 المميزاتDict
سياسة/fc0/bias الموتر (256،) float32
سياسة/fc0/الوزن الموتر (256، 11) float32
سياسة/fc1 المميزاتDict
سياسة/fc1/bias الموتر (256،) float32
السياسة/fc1/الوزن الموتر (256، 256) float32
سياسة/last_fc المميزاتDict
سياسة/last_fc/bias الموتر (3،) float32
سياسة/last_fc/weight الموتر (3، 256) float32
سياسة/last_fc_log_std المميزاتDict
سياسة/last_fc_log_std/bias الموتر (3،) float32
سياسة/last_fc_log_std/weight الموتر (3، 256) float32
السياسة/اللاخطية الموتر خيط
سياسة/output_distribution الموتر خيط
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v2-medium-expert

  • حجم التحميل : 290.43 MiB

  • حجم مجموعة البيانات : 228.28 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): فقط عندما shuffle_files=False (القطار)

  • الإنشقاقات :

ينقسم أمثلة
'train' 3,214
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v2-medium-replay

  • حجم التحميل : 72.34 MiB

  • حجم مجموعة البيانات : 46.51 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): نعم

  • الإنشقاقات :

ينقسم أمثلة
'train' 2,041
  • هيكل الميزة :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خوارزمية الموتر خيط
تكرار الموتر int32
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32

d4rl_mujoco_hopper/v2-random

  • حجم التحميل : 145.46 MiB

  • حجم مجموعة البيانات : 130.72 MiB

  • التخزين المؤقت التلقائي ( الوثائق ): فقط عندما shuffle_files=False (القطار)

  • الإنشقاقات :

ينقسم أمثلة
'train' 45,240
  • هيكل الميزة :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(3,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(6,), dtype=float64),
            'qvel': Tensor(shape=(6,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(11,), dtype=float32),
        'reward': float32,
    }),
})
  • وثائق الميزة :
ميزة فصل شكل نوع D وصف
المميزاتDict
خطوات مجموعة البيانات
الخطوات/الإجراء الموتر (3،) float32
الخطوات/الخصم الموتر float32
الخطوات/المعلومات المميزاتDict
الخطوات/المعلومات/action_log_probs الموتر float64
الخطوات/المعلومات/qpos الموتر (6،) float64
الخطوات/المعلومات/qvel الموتر (6،) float64
الخطوات/is_first الموتر منطقي
الخطوات/is_last الموتر منطقي
الخطوات/is_terminal الموتر منطقي
الخطوات/الملاحظة الموتر (11،) float32
خطوات/مكافأة الموتر float32