d4rl_mujoco_ant,d4rl_mujoco_ant

  • شرح :

D4RL یک معیار منبع باز برای یادگیری تقویتی آفلاین است. این محیط ها و مجموعه داده های استاندارد شده را برای آموزش و الگوریتم های محک ارائه می کند.

مجموعه داده ها از فرمت RLDS پیروی می کنند تا مراحل و قسمت ها را نشان دهند.

@misc{fu2020d4rl,
    title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
    author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
    year={2020},
    eprint={2004.07219},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

d4rl_mujoco_ant/v0-expert (پیکربندی پیش فرض)

  • حجم دانلود : 131.34 MiB

  • حجم مجموعه داده : 464.94 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1288
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v0-medium

  • حجم دانلود : 131.39 MiB

  • حجم مجموعه داده : 464.78 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1,122
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v0-medium-expert

  • حجم دانلود : 262.73 MiB

  • حجم مجموعه داده : 929.71 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 2,410
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v0-mixed

  • حجم دانلود : 104.63 MiB

  • حجم مجموعه داده : 464.93 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1,320
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v0-random

  • حجم دانلود : 139.50 MiB

  • حجم مجموعه داده : 464.97 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1,377
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v1-expert

  • حجم دانلود : 220.72 MiB

  • حجم مجموعه داده : 968.63 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1033
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
خط مشی FeaturesDict
Policy/fc0 FeaturesDict
Policy/fc0/bias تانسور (256،) float32
سیاست/fc0/وزن تانسور (256، 111) float32
Policy/fc1 FeaturesDict
Policy/fc1/bias تانسور (256،) float32
سیاست/fc1/وزن تانسور (256، 256) float32
Policy/last_fc FeaturesDict
Policy/last_fc/bias تانسور (8،) float32
Policy/last_fc/weight تانسور (8، 256) float32
Policy/last_fc_log_std FeaturesDict
Policy/last_fc_log_std/bias تانسور (8،) float32
Policy/last_fc_log_std/weight تانسور (8، 256) float32
سیاست/غیرخطی تانسور رشته
سیاست/خروجی_توزیع تانسور رشته
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float32
Steps/infos/qpos تانسور (15،) float32
Steps/infos/qvel تانسور (14،) float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v1-medium

  • حجم دانلود : 222.39 MiB

  • حجم مجموعه داده : 1023.71 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1179
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
خط مشی FeaturesDict
Policy/fc0 FeaturesDict
Policy/fc0/bias تانسور (256،) float32
سیاست/fc0/وزن تانسور (256، 111) float32
Policy/fc1 FeaturesDict
Policy/fc1/bias تانسور (256،) float32
سیاست/fc1/وزن تانسور (256، 256) float32
Policy/last_fc FeaturesDict
Policy/last_fc/bias تانسور (8،) float32
Policy/last_fc/weight تانسور (8، 256) float32
Policy/last_fc_log_std FeaturesDict
Policy/last_fc_log_std/bias تانسور (8،) float32
Policy/last_fc_log_std/weight تانسور (8، 256) float32
سیاست/غیرخطی تانسور رشته
سیاست/خروجی_توزیع تانسور رشته
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float32
Steps/infos/qpos تانسور (15،) float32
Steps/infos/qvel تانسور (14،) float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v1-medium-expert

  • حجم دانلود : 442.25 MiB

  • حجم مجموعه داده : 1.13 GiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 2211
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float32
Steps/infos/qpos تانسور (15،) float32
Steps/infos/qvel تانسور (14،) float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v1-replay-medium

  • حجم دانلود : 132.05 MiB

  • حجم مجموعه داده : 175.27 MiB

  • ذخیره خودکار ( مستندات ): فقط زمانی که shuffle_files=False (قطار)

  • تقسیم ها :

شکاف مثال ها
'train' 485
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float64),
        'reward': float64,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float64
مراحل/تخفیف تانسور float64
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float64
مراحل/پاداش تانسور float64

d4rl_mujoco_ant/v1-full-replay

  • حجم دانلود : 437.57 MiB

  • حجم مجموعه داده : 580.09 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1,319
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float64),
        'discount': float64,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float64),
        'reward': float64,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float64
مراحل/تخفیف تانسور float64
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float64
مراحل/پاداش تانسور float64

d4rl_mujoco_ant/v1-random

  • حجم دانلود : 225.18 MiB

  • حجم مجموعه داده : 583.83 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیمات :

شکاف مثال ها
'train' 5,741
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float32,
            'qpos': Tensor(shape=(15,), dtype=float32),
            'qvel': Tensor(shape=(14,), dtype=float32),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float32
Steps/infos/qpos تانسور (15،) float32
Steps/infos/qvel تانسور (14،) float32
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v2-expert

  • حجم دانلود : 355.94 MiB

  • حجم مجموعه داده : 969.38 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1035
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
خط مشی FeaturesDict
Policy/fc0 FeaturesDict
Policy/fc0/bias تانسور (256،) float32
سیاست/fc0/وزن تانسور (256، 111) float32
Policy/fc1 FeaturesDict
Policy/fc1/bias تانسور (256،) float32
سیاست/fc1/وزن تانسور (256، 256) float32
Policy/last_fc FeaturesDict
Policy/last_fc/bias تانسور (8،) float32
Policy/last_fc/weight تانسور (8، 256) float32
Policy/last_fc_log_std FeaturesDict
Policy/last_fc_log_std/bias تانسور (8،) float32
Policy/last_fc_log_std/weight تانسور (8، 256) float32
سیاست/غیرخطی تانسور رشته
سیاست/خروجی_توزیع تانسور رشته
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v2-full-replay

  • حجم دانلود : 428.57 MiB

  • حجم مجموعه داده : 580.09 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1,319
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v2-medium

  • حجم دانلود : 358.81 MiB

  • حجم مجموعه داده : 1.01 GiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 1203
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'policy': FeaturesDict({
        'fc0': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 111), dtype=float32),
        }),
        'fc1': FeaturesDict({
            'bias': Tensor(shape=(256,), dtype=float32),
            'weight': Tensor(shape=(256, 256), dtype=float32),
        }),
        'last_fc': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'last_fc_log_std': FeaturesDict({
            'bias': Tensor(shape=(8,), dtype=float32),
            'weight': Tensor(shape=(8, 256), dtype=float32),
        }),
        'nonlinearity': string,
        'output_distribution': string,
    }),
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
خط مشی FeaturesDict
Policy/fc0 FeaturesDict
Policy/fc0/bias تانسور (256،) float32
سیاست/fc0/وزن تانسور (256، 111) float32
Policy/fc1 FeaturesDict
Policy/fc1/bias تانسور (256،) float32
سیاست/fc1/وزن تانسور (256، 256) float32
Policy/last_fc FeaturesDict
Policy/last_fc/bias تانسور (8،) float32
Policy/last_fc/weight تانسور (8، 256) float32
Policy/last_fc_log_std FeaturesDict
Policy/last_fc_log_std/bias تانسور (8،) float32
Policy/last_fc_log_std/weight تانسور (8، 256) float32
سیاست/غیرخطی تانسور رشته
سیاست/خروجی_توزیع تانسور رشته
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v2-medium-expert

  • حجم دانلود : 713.67 MiB

  • حجم مجموعه داده : 1.13 GiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 2237
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v2-replay-medium

  • حجم دانلود : 130.16 MiB

  • حجم مجموعه داده : 175.27 MiB

  • ذخیره خودکار ( مستندات ): فقط زمانی که shuffle_files=False (قطار)

  • تقسیم ها :

شکاف مثال ها
'train' 485
  • ساختار ویژگی :
FeaturesDict({
    'algorithm': string,
    'iteration': int32,
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
الگوریتم تانسور رشته
تکرار تانسور int32
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32

d4rl_mujoco_ant/v2-random

  • حجم دانلود : 366.66 MiB

  • حجم مجموعه داده : 583.90 MiB

  • ذخیره خودکار ( اسناد ): خیر

  • تقسیم ها :

شکاف مثال ها
'train' 5,822
  • ساختار ویژگی :
FeaturesDict({
    'steps': Dataset({
        'action': Tensor(shape=(8,), dtype=float32),
        'discount': float32,
        'infos': FeaturesDict({
            'action_log_probs': float64,
            'qpos': Tensor(shape=(15,), dtype=float64),
            'qvel': Tensor(shape=(14,), dtype=float64),
        }),
        'is_first': bool,
        'is_last': bool,
        'is_terminal': bool,
        'observation': Tensor(shape=(111,), dtype=float32),
        'reward': float32,
    }),
})
  • مستندات ویژگی :
ویژگی کلاس شکل نوع D شرح
FeaturesDict
مراحل مجموعه داده
مراحل/عمل تانسور (8،) float32
مراحل/تخفیف تانسور float32
مراحل/اطلاعات FeaturesDict
Steps/infos/action_log_probs تانسور float64
Steps/infos/qpos تانسور (15،) float64
Steps/infos/qvel تانسور (14،) float64
Steps/is_first تانسور بوول
Steps/is_last تانسور بوول
Steps/is_terminal تانسور بوول
مراحل / مشاهده تانسور (111،) float32
مراحل/پاداش تانسور float32