- Description:
D4RL is an open-source benchmark for offline reinforcement learning. It provides standardized environments and datasets for training and benchmarking algorithms.
The datasets follow the RLDS format to represent steps and episodes.
Config description: See more details about the task and its versions in https://github.com/rail-berkeley/d4rl/wiki/Tasks#adroit
Source code:
tfds.d4rl.d4rl_adroit_door.D4rlAdroitDoor
Versions:
1.0.0
: Initial release.1.1.0
(default): Added is_last.
Supervised keys (See
as_supervised
doc):None
Figure (tfds.show_examples): Not supported.
Citation:
@misc{fu2020d4rl,
title={D4RL: Datasets for Deep Data-Driven Reinforcement Learning},
author={Justin Fu and Aviral Kumar and Ofir Nachum and George Tucker and Sergey Levine},
year={2020},
eprint={2004.07219},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
d4rl_adroit_door/v0-human (default config)
Download size:
2.97 MiB
Dataset size:
3.36 MiB
Auto-cached (documentation): Yes
Splits:
Split | Examples |
---|---|
'train' |
50 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(28,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(39,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
steps | Dataset | |||
steps/action | Tensor | (28,) | float32 | |
steps/discount | Tensor | float32 | ||
steps/infos | FeaturesDict | |||
steps/infos/qpos | Tensor | (30,) | float32 | |
steps/infos/qvel | Tensor | (30,) | float32 | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | Tensor | (39,) | float32 | |
steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_door/v0-cloned
Download size:
602.42 MiB
Dataset size:
497.47 MiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
6,214 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(28,), dtype=float32),
'discount': float64,
'infos': FeaturesDict({
'qpos': Tensor(shape=(30,), dtype=float64),
'qvel': Tensor(shape=(30,), dtype=float64),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(39,), dtype=float64),
'reward': float64,
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
steps | Dataset | |||
steps/action | Tensor | (28,) | float32 | |
steps/discount | Tensor | float64 | ||
steps/infos | FeaturesDict | |||
steps/infos/qpos | Tensor | (30,) | float64 | |
steps/infos/qvel | Tensor | (30,) | float64 | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | Tensor | (39,) | float64 | |
steps/reward | Tensor | float64 |
- Examples (tfds.as_dataframe):
d4rl_adroit_door/v0-expert
Download size:
511.05 MiB
Dataset size:
710.30 MiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
5,000 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(28,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_logstd': Tensor(shape=(28,), dtype=float32),
'action_mean': Tensor(shape=(28,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(39,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
steps | Dataset | |||
steps/action | Tensor | (28,) | float32 | |
steps/discount | Tensor | float32 | ||
steps/infos | FeaturesDict | |||
steps/infos/action_logstd | Tensor | (28,) | float32 | |
steps/infos/action_mean | Tensor | (28,) | float32 | |
steps/infos/qpos | Tensor | (30,) | float32 | |
steps/infos/qvel | Tensor | (30,) | float32 | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | Tensor | (39,) | float32 | |
steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_door/v1-human
Download size:
2.98 MiB
Dataset size:
3.42 MiB
Auto-cached (documentation): Yes
Splits:
Split | Examples |
---|---|
'train' |
25 |
- Feature structure:
FeaturesDict({
'steps': Dataset({
'action': Tensor(shape=(28,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'door_body_pos': Tensor(shape=(3,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(39,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
steps | Dataset | |||
steps/action | Tensor | (28,) | float32 | |
steps/discount | Tensor | float32 | ||
steps/infos | FeaturesDict | |||
steps/infos/door_body_pos | Tensor | (3,) | float32 | |
steps/infos/qpos | Tensor | (30,) | float32 | |
steps/infos/qvel | Tensor | (30,) | float32 | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | Tensor | (39,) | float32 | |
steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_door/v1-cloned
Download size:
280.72 MiB
Dataset size:
1.85 GiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
4,358 |
- Feature structure:
FeaturesDict({
'algorithm': string,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(39, 256), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(256,), dtype=float32),
'weight': Tensor(shape=(256, 256), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(28,), dtype=float32),
'weight': Tensor(shape=(256, 28), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(28,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'door_body_pos': Tensor(shape=(3,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(39,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
algorithm | Tensor | string | ||
policy | FeaturesDict | |||
policy/fc0 | FeaturesDict | |||
policy/fc0/bias | Tensor | (256,) | float32 | |
policy/fc0/weight | Tensor | (39, 256) | float32 | |
policy/fc1 | FeaturesDict | |||
policy/fc1/bias | Tensor | (256,) | float32 | |
policy/fc1/weight | Tensor | (256, 256) | float32 | |
policy/last_fc | FeaturesDict | |||
policy/last_fc/bias | Tensor | (28,) | float32 | |
policy/last_fc/weight | Tensor | (256, 28) | float32 | |
policy/nonlinearity | Tensor | string | ||
policy/output_distribution | Tensor | string | ||
steps | Dataset | |||
steps/action | Tensor | (28,) | float32 | |
steps/discount | Tensor | float32 | ||
steps/infos | FeaturesDict | |||
steps/infos/door_body_pos | Tensor | (3,) | float32 | |
steps/infos/qpos | Tensor | (30,) | float32 | |
steps/infos/qvel | Tensor | (30,) | float32 | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | Tensor | (39,) | float32 | |
steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):
d4rl_adroit_door/v1-expert
Download size:
511.22 MiB
Dataset size:
803.48 MiB
Auto-cached (documentation): No
Splits:
Split | Examples |
---|---|
'train' |
5,000 |
- Feature structure:
FeaturesDict({
'algorithm': string,
'policy': FeaturesDict({
'fc0': FeaturesDict({
'bias': Tensor(shape=(32,), dtype=float32),
'weight': Tensor(shape=(32, 39), dtype=float32),
}),
'fc1': FeaturesDict({
'bias': Tensor(shape=(32,), dtype=float32),
'weight': Tensor(shape=(32, 32), dtype=float32),
}),
'last_fc': FeaturesDict({
'bias': Tensor(shape=(28,), dtype=float32),
'weight': Tensor(shape=(28, 32), dtype=float32),
}),
'last_fc_log_std': FeaturesDict({
'bias': Tensor(shape=(28,), dtype=float32),
'weight': Tensor(shape=(28, 32), dtype=float32),
}),
'nonlinearity': string,
'output_distribution': string,
}),
'steps': Dataset({
'action': Tensor(shape=(28,), dtype=float32),
'discount': float32,
'infos': FeaturesDict({
'action_log_std': Tensor(shape=(28,), dtype=float32),
'action_mean': Tensor(shape=(28,), dtype=float32),
'door_body_pos': Tensor(shape=(3,), dtype=float32),
'qpos': Tensor(shape=(30,), dtype=float32),
'qvel': Tensor(shape=(30,), dtype=float32),
}),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'observation': Tensor(shape=(39,), dtype=float32),
'reward': float32,
}),
})
- Feature documentation:
Feature | Class | Shape | Dtype | Description |
---|---|---|---|---|
FeaturesDict | ||||
algorithm | Tensor | string | ||
policy | FeaturesDict | |||
policy/fc0 | FeaturesDict | |||
policy/fc0/bias | Tensor | (32,) | float32 | |
policy/fc0/weight | Tensor | (32, 39) | float32 | |
policy/fc1 | FeaturesDict | |||
policy/fc1/bias | Tensor | (32,) | float32 | |
policy/fc1/weight | Tensor | (32, 32) | float32 | |
policy/last_fc | FeaturesDict | |||
policy/last_fc/bias | Tensor | (28,) | float32 | |
policy/last_fc/weight | Tensor | (28, 32) | float32 | |
policy/last_fc_log_std | FeaturesDict | |||
policy/last_fc_log_std/bias | Tensor | (28,) | float32 | |
policy/last_fc_log_std/weight | Tensor | (28, 32) | float32 | |
policy/nonlinearity | Tensor | string | ||
policy/output_distribution | Tensor | string | ||
steps | Dataset | |||
steps/action | Tensor | (28,) | float32 | |
steps/discount | Tensor | float32 | ||
steps/infos | FeaturesDict | |||
steps/infos/action_log_std | Tensor | (28,) | float32 | |
steps/infos/action_mean | Tensor | (28,) | float32 | |
steps/infos/door_body_pos | Tensor | (3,) | float32 | |
steps/infos/qpos | Tensor | (30,) | float32 | |
steps/infos/qvel | Tensor | (30,) | float32 | |
steps/is_first | Tensor | bool | ||
steps/is_last | Tensor | bool | ||
steps/is_terminal | Tensor | bool | ||
steps/observation | Tensor | (39,) | float32 | |
steps/reward | Tensor | float32 |
- Examples (tfds.as_dataframe):