- คำอธิบาย :
xArm ทำหน้าที่จัดการ 6 ภารกิจ
หน้าแรก : https://arxiv.org/abs/2203.06173
ซอร์สโค้ด :
tfds.robotics.rtx.BerkeleyMvpConvertedExternallyToRlds
รุ่น :
-
0.1.0
(ค่าเริ่มต้น): การเปิดตัวครั้งแรก
-
ขนาดการดาวน์โหลด :
Unknown size
ขนาดชุดข้อมูล :
12.34 GiB
แคชอัตโนมัติ ( เอกสาร ): No
แยก :
แยก | ตัวอย่าง |
---|---|
'train' | 480 |
- โครงสร้างคุณสมบัติ :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(8,), dtype=float32, description=Robot action, consists of [7 delta joint pos,1x gripper binary state].),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'gripper': Scalar(shape=(), dtype=bool, description=Binary gripper state (1 - closed, 0 - open)),
'hand_image': Image(shape=(480, 640, 3), dtype=uint8, description=Hand camera RGB observation.),
'joint_pos': Tensor(shape=(7,), dtype=float32, description=xArm joint positions (7 DoF).),
'pose': Tensor(shape=(7,), dtype=float32, description=Gripper pose, robot frame, [3 position, 4 rotation]),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- เอกสารคุณสมบัติ :
คุณสมบัติ | ระดับ | รูปร่าง | ประเภทD | คำอธิบาย |
---|---|---|---|---|
คุณสมบัติDict | ||||
ตอนที่_ข้อมูลเมตา | คุณสมบัติDict | |||
ตอนที่_metadata/file_path | ข้อความ | เชือก | เส้นทางไปยังไฟล์ข้อมูลต้นฉบับ | |
ขั้นตอน | ชุดข้อมูล | |||
ขั้นตอน/การดำเนินการ | เทนเซอร์ | (8,) | ลอย32 | การทำงานของหุ่นยนต์ ประกอบด้วย [7 ตำแหน่งข้อต่อเดลต้า, สถานะไบนารีของกริปเปอร์ 1x] |
ขั้นตอน/ส่วนลด | สเกลาร์ | ลอย32 | ส่วนลดหากมีให้ ค่าเริ่มต้นคือ 1 | |
ขั้นตอน/is_first | เทนเซอร์ | บูล | ||
ขั้นตอน/is_last | เทนเซอร์ | บูล | ||
ขั้นตอน/is_terminal | เทนเซอร์ | บูล | ||
ขั้นตอน/ภาษา_embedding | เทนเซอร์ | (512,) | ลอย32 | การฝังภาษาโคน่า ดู https://tfhub.dev/google/universal-sentence-encoder-large/5 |
ขั้นตอน/Language_instruction | ข้อความ | เชือก | การสอนภาษา. | |
ขั้นตอน/การสังเกต | คุณสมบัติDict | |||
ขั้นตอน/การสังเกต/อุปกรณ์จับยึด | สเกลาร์ | บูล | สถานะกริปเปอร์แบบไบนารี (1 - ปิด, 0 - เปิด) | |
ขั้นตอน/การสังเกต/hand_image | ภาพ | (480, 640, 3) | uint8 | การสังเกต RGB ของกล้องมือ |
ขั้นตอน/การสังเกต/joint_pos | เทนเซอร์ | (7,) | ลอย32 | ตำแหน่งข้อต่อ xArm (7 DoF) |
ขั้นตอน/การสังเกต/ท่าทาง | เทนเซอร์ | (7,) | ลอย32 | ท่ากริปเปอร์ โครงหุ่นยนต์ [3 ตำแหน่ง 4 การหมุน] |
ขั้นตอน/รางวัล | สเกลาร์ | ลอย32 | รางวัลหากมีให้ 1 ในขั้นตอนสุดท้ายสำหรับการสาธิต |
คีย์ภายใต้การดูแล (ดู
as_supervised
doc ):None
รูปภาพ ( tfds.show_examples ): ไม่รองรับ
ตัวอย่าง ( tfds.as_dataframe ):
- การอ้างอิง :
@InProceedings{Radosavovic2022,
title = {Real-World Robot Learning with Masked Visual Pre-training},
author = {Ilija Radosavovic and Tete Xiao and Stephen James and Pieter Abbeel and Jitendra Malik and Trevor Darrell},
booktitle = {CoRL},
year = {2022}
}