- คำอธิบาย :
งานจัดการบนโต๊ะของ Franka
หน้าแรก : https://ut-austin-rpl.github.io/sirius/
ซอร์สโค้ด :
tfds.robotics.rtx.AustinSiriusDatasetConvertedExternallyToRlds
รุ่น :
-
0.1.0
(ค่าเริ่มต้น): การเปิดตัวครั้งแรก
-
ขนาดการดาวน์โหลด :
Unknown size
ขนาดชุดข้อมูล :
6.55 GiB
แคชอัตโนมัติ ( เอกสาร ): No
แยก :
แยก | ตัวอย่าง |
---|---|
'train' | 559 |
- โครงสร้างคุณสมบัติ :
FeaturesDict({
'episode_metadata': FeaturesDict({
'file_path': Text(shape=(), dtype=string),
}),
'steps': Dataset({
'action': Tensor(shape=(7,), dtype=float32, description=Robot action, consists of [3x ee relative pos, 3x ee relative rotation, 1x gripper action].),
'action_mode': Tensor(shape=(1,), dtype=float32, description=Type of interaction. -1: initial human demonstration. 1: intervention. 0: autonomuos robot execution (includes pre-intervention class)),
'discount': Scalar(shape=(), dtype=float32, description=Discount if provided, default to 1.),
'intv_label': Tensor(shape=(1,), dtype=float32, description=Same as action_modes, except 15 timesteps preceding intervention are labeled as -10.),
'is_first': bool,
'is_last': bool,
'is_terminal': bool,
'language_embedding': Tensor(shape=(512,), dtype=float32, description=Kona language embedding. See https://tfhub.dev/google/universal-sentence-encoder-large/5),
'language_instruction': Text(shape=(), dtype=string),
'observation': FeaturesDict({
'image': Image(shape=(84, 84, 3), dtype=uint8, description=Main camera RGB observation.),
'state': Tensor(shape=(8,), dtype=float32, description=Default robot state, consists of [7x robot joint state, 1x gripper state].),
'state_ee': Tensor(shape=(16,), dtype=float32, description=End-effector state, represented as 4x4 homogeneous transformation matrix of ee pose.),
'state_gripper': Tensor(shape=(1,), dtype=float32, description=Robot gripper opening width. Ranges between ~0 (closed) to ~0.077 (open)),
'state_joint': Tensor(shape=(7,), dtype=float32, description=Robot 7-dof joint information.),
'wrist_image': Image(shape=(84, 84, 3), dtype=uint8, description=Wrist camera RGB observation.),
}),
'reward': Scalar(shape=(), dtype=float32, description=Reward if provided, 1 on final step for demos.),
}),
})
- เอกสารคุณสมบัติ :
คุณสมบัติ | ระดับ | รูปร่าง | ประเภทD | คำอธิบาย |
---|---|---|---|---|
คุณสมบัติDict | ||||
ตอนที่_ข้อมูลเมตา | คุณสมบัติDict | |||
ตอนที่_metadata/file_path | ข้อความ | เชือก | เส้นทางไปยังไฟล์ข้อมูลต้นฉบับ | |
ขั้นตอน | ชุดข้อมูล | |||
ขั้นตอน/การดำเนินการ | เทนเซอร์ | (7,) | ลอย32 | การทำงานของหุ่นยนต์ ประกอบด้วย [ตำแหน่งสัมพันธ์ 3x ee, การหมุนสัมพันธ์ ee 3x, การทำงานของมือจับ 1x] |
ขั้นตอน/การกระทำ_โหมด | เทนเซอร์ | (1,) | ลอย32 | ประเภทของการโต้ตอบ -1: การสาธิตของมนุษย์ครั้งแรก 1: การแทรกแซง 0: การดำเนินการหุ่นยนต์อัตโนมัติ (รวมคลาสก่อนการแทรกแซง) |
ขั้นตอน/ส่วนลด | สเกลาร์ | ลอย32 | ส่วนลดหากมีให้ ค่าเริ่มต้นคือ 1 | |
ขั้นตอน/intv_label | เทนเซอร์ | (1,) | ลอย32 | เช่นเดียวกับ action_modes ยกเว้น 15 ก้าวก่อนหน้าการแทรกแซงจะมีป้ายกำกับเป็น -10 |
ขั้นตอน/is_first | เทนเซอร์ | บูล | ||
ขั้นตอน/is_last | เทนเซอร์ | บูล | ||
ขั้นตอน/is_terminal | เทนเซอร์ | บูล | ||
ขั้นตอน/ภาษา_embedding | เทนเซอร์ | (512,) | ลอย32 | การฝังภาษาโคน่า ดู https://tfhub.dev/google/universal-sentence-encoder-large/5 |
ขั้นตอน/Language_instruction | ข้อความ | เชือก | การสอนภาษา. | |
ขั้นตอน/การสังเกต | คุณสมบัติDict | |||
ขั้นตอน/การสังเกต/ภาพ | ภาพ | (84, 84, 3) | uint8 | การสังเกต RGB ของกล้องหลัก |
ขั้นตอน/การสังเกต/สถานะ | เทนเซอร์ | (8,) | ลอย32 | สถานะเริ่มต้นของหุ่นยนต์ ประกอบด้วย [สถานะข้อต่อหุ่นยนต์ 7x, สถานะกริปเปอร์ 1x] |
ขั้นตอน/การสังเกต/state_ee | เทนเซอร์ | (16,) | ลอย32 | สถานะเอนด์เอฟเฟ็กเตอร์ แสดงเป็นเมทริกซ์การแปลงเนื้อเดียวกัน 4x4 ของท่า ee |
ขั้นตอน/การสังเกต/state_gripper | เทนเซอร์ | (1,) | ลอย32 | ความกว้างของการเปิดของมือจับหุ่นยนต์ ช่วงระหว่าง ~0 (ปิด) ถึง ~0.077 (เปิด) |
ขั้นตอน/การสังเกต/state_joint | เทนเซอร์ | (7,) | ลอย32 | ข้อมูลข้อต่อหุ่นยนต์ 7-dof |
ขั้นตอน/การสังเกต/wrist_image | ภาพ | (84, 84, 3) | uint8 | การสังเกต RGB ของกล้องข้อมือ |
ขั้นตอน/รางวัล | สเกลาร์ | ลอย32 | รางวัลหากมีให้ 1 ในขั้นตอนสุดท้ายสำหรับการสาธิต |
คีย์ภายใต้การดูแล (ดู
as_supervised
doc ):None
รูปภาพ ( tfds.show_examples ): ไม่รองรับ
ตัวอย่าง ( tfds.as_dataframe ):
- การอ้างอิง :
@inproceedings{liu2022robot,
title = {Robot Learning on the Job: Human-in-the-Loop Autonomy and Learning During Deployment},
author = {Huihan Liu and Soroush Nasiriany and Lance Zhang and Zhiyao Bao and Yuke Zhu},
booktitle = {Robotics: Science and Systems (RSS)},
year = {2023}
}