Calculates how often predictions match one-hot labels.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.metrics.categorical_accuracy`
tf.keras.metrics.categorical_accuracy(
y_true, y_pred
)
Standalone usage:
y_true = [[0, 0, 1], [0, 1, 0]]
y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
m = tf.keras.metrics.categorical_accuracy(y_true, y_pred)
assert m.shape == (2,)
m.numpy()
array([0., 1.], dtype=float32)
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
Args |
y_true
|
One-hot ground truth values.
|
y_pred
|
The prediction values.
|
Returns |
Categorical accuracy values.
|