View source on GitHub |
Type specification for tf.data.Dataset
.
Inherits From: TypeSpec
, TraceType
tf.data.DatasetSpec(
element_spec, dataset_shape=()
)
See tf.TypeSpec
for more information about TensorFlow type specifications.
dataset = tf.data.Dataset.range(3)
tf.data.DatasetSpec.from_value(dataset)
DatasetSpec(TensorSpec(shape=(), dtype=tf.int64, name=None), TensorShape([]))
Methods
from_value
@staticmethod
from_value( value )
Creates a DatasetSpec
for the given tf.data.Dataset
value.
is_compatible_with
is_compatible_with(
spec_or_value
)
Returns true if spec_or_value
is compatible with this TypeSpec.
Prefer using "is_subtype_of" and "most_specific_common_supertype" wherever possible.
Args | |
---|---|
spec_or_value
|
A TypeSpec or TypeSpec associated value to compare against. |
is_subtype_of
is_subtype_of(
other
)
See base class.
most_specific_common_supertype
most_specific_common_supertype(
others
)
See base class.
most_specific_compatible_type
most_specific_compatible_type(
other: 'TypeSpec'
) -> 'TypeSpec'
Returns the most specific TypeSpec compatible with self
and other
. (deprecated)
Deprecated. Please use most_specific_common_supertype
instead.
Do not override this function.
Args | |
---|---|
other
|
A TypeSpec .
|
Raises | |
---|---|
ValueError
|
If there is no TypeSpec that is compatible with both self
and other .
|
__eq__
__eq__(
other
)
Return self==value.
__ne__
__ne__(
other
) -> bool
Return self!=value.