Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.compat.v1.tpu.experimental.StochasticGradientDescentParameters(
learning_rate: float,
use_gradient_accumulation: bool = True,
clip_weight_min: Optional[float] = None,
clip_weight_max: Optional[float] = None,
weight_decay_factor: Optional[float] = None,
multiply_weight_decay_factor_by_learning_rate: Optional[bool] = None,
clip_gradient_min: Optional[float] = None,
clip_gradient_max: Optional[float] = None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the
optimization_parameters
argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
...
embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
...
optimization_parameters=(
tf.tpu.experimental.StochasticGradientDescentParameters(0.1))))