TensorFlow 1 version | View source on GitHub |
Computes tf.sparse.maximum
of elements across dimensions of a SparseTensor.
tf.sparse.reduce_max(
sp_input, axis=None, keepdims=None, output_is_sparse=False, name=None
)
This is the reduction operation for the elementwise tf.sparse.maximum
op.
This Op takes a SparseTensor and is the sparse counterpart to
tf.reduce_max()
. In particular, this Op also returns a dense Tensor
if output_is_sparse
is False
, or a SparseTensor
if output_is_sparse
is True
.
Reduces sp_input
along the dimensions given in axis
. Unless
keepdims
is true, the rank of the tensor is reduced by 1 for each entry in
axis
. If keepdims
is true, the reduced dimensions are retained
with length 1.
If axis
has no entries, all dimensions are reduced, and a tensor
with a single element is returned. Additionally, the axes can be negative,
similar to the indexing rules in Python.
The values not defined in sp_input
don't participate in the reduce max,
as opposed to be implicitly assumed 0 -- hence it can return negative values
for sparse axis
. But, in case there are no values in
axis
, it will reduce to 0. See second example below.
For example:
'x' represents [[1, ?, 2]
[?, 3, ?]]
where ? is implicitly-zero.
x = tf.sparse.SparseTensor([[0, 0], [0, 2], [1, 1]], [1, 2, 3], [2, 3])
tf.sparse.reduce_max(x)
<tf.Tensor: shape=(), dtype=int32, numpy=3>
tf.sparse.reduce_max(x, 0)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 3, 2], dtype=int32)>
tf.sparse.reduce_max(x, 1)
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([2, 3], dtype=int32)>
tf.sparse.reduce_max(x, 1, keepdims=True)
<tf.Tensor: shape=(2, 1), dtype=int32, numpy=
array([[2],
[3]], dtype=int32)>
tf.sparse.reduce_max(x, [0, 1])
<tf.Tensor: shape=(), dtype=int32, numpy=3>
'y' represents [[-7, ?]
[ 4, 3]
[ ?, ?]
y = tf.sparse.SparseTensor([[0, 0,], [1, 0], [1, 1]], [-7, 4, 3],
[3, 2])
tf.sparse.reduce_max(y, 1)
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([-7, 4, 0], dtype=int32)>
Args | |
---|---|
sp_input
|
The SparseTensor to reduce. Should have numeric type. |
axis
|
The dimensions to reduce; list or scalar. If None (the
default), reduces all dimensions.
|
keepdims
|
If true, retain reduced dimensions with length 1. |
output_is_sparse
|
If true, returns a SparseTensor instead of a dense
Tensor (the default).
|
name
|
A name for the operation (optional). |
Returns | |
---|---|
The reduced Tensor or the reduced SparseTensor if output_is_sparse is
True.
|