Computes gradients of the average pooling function.
tf.raw_ops.AvgPoolGrad(
orig_input_shape, grad, ksize, strides, padding, data_format='NHWC',
name=None
)
Args |
orig_input_shape
|
A Tensor of type int32 .
1-D. Shape of the original input to avg_pool .
|
grad
|
A Tensor . Must be one of the following types: half , bfloat16 , float32 , float64 .
4-D with shape [batch, height, width, channels] . Gradients w.r.t.
the output of avg_pool .
|
ksize
|
A list of ints that has length >= 4 .
The size of the sliding window for each dimension of the input.
|
strides
|
A list of ints that has length >= 4 .
The stride of the sliding window for each dimension of the input.
|
padding
|
A string from: "SAME", "VALID" .
The type of padding algorithm to use.
|
data_format
|
An optional string from: "NHWC", "NCHW" . Defaults to "NHWC" .
Specify the data format of the input and output data. With the
default format "NHWC", the data is stored in the order of:
[batch, in_height, in_width, in_channels].
Alternatively, the format could be "NCHW", the data storage order of:
[batch, in_channels, in_height, in_width].
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as grad .
|